Моногибридное скрещивание кратко и понятно. При моногибридном скрещивании. Примеры решения задач на моногибридное скрещивание

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Лекция 2 . М оногибридно е скр е щивани е

Размещено на http :// www . allbest . ru /

МОНОГИБРИДНО Е СКРЕЩИВ А НИ Е

План

1. Закономерности открытые Г. Менделем

2. Моногибридное скрещивание

3. Наследование при неполном доминировании

4. Кодоминирование

1. Зако номерности открытые Г. Менделем

мендель скрещивание доминирование

Основополагающим методом изучения наследования явился метод, разработанный Грегором Менделем. О результатах своей работы он сообщил 8 февраля и 8 марта в 1865г. обществу естествоиспытателей в г. Брно.

Мендель положил в основу генетического анализа принцип изучения наследования отдельных пар признаков.

Одной из особенностей исследования Менделя был подбор исходных родительских форм. Для скрещивания он брал растения, различающиеся по одной, двум или трем парам контрастных признаков.

Вторая особенность метода заключалась в использовании количественного учета гибридных растений, различающихся по отдельным признакам, в ряду последовательных поколений.

Третьей особенностью метода Менделя было применение индивидуального анализа потомства от каждого растения в ряду поколений. Перечисленные простые приемы наследования явились новым методом изучения наследственности, открывшим целую эпоху.

Успеху работы Менделя способствовал и продуманный выбор объекта. Объектом своих работ Мендель избрал различные сорта самоопыляющихся растений - гороха.

Несмотря на успешное завершение опытов Менделя, его открытие не было понято современниками. Признание нового метода изучения наследственности и обнаружения основных закономерностей наследственных свойств и признаков произошло лишь в 1900г.

Прежде чем перейти к изложению анализа наследования признаков, усвоим некоторые сокращения, принятые в генетике.

Для генетического анализа наследования тех или иных признаков организма при половом размножении необходимо производить скрещивание двух особей разных полов.

Скрещивание в генетике обозначают знаком умножение «Х». При написании схемы скрещивания принято на первом месте ставить женский пол (обозначают + - зеркало Венеры), мужской пол > (щит и копье Марса). Родительские организмы, взятые в скрещивание, обозначают буквой Р . Потомство от скрещивания двух особей с различной наследственностью называют гибридными, а отдельную особь - гибридом. Гибридное поколение обозначают буквой F с цифровым индексом, соответствующим порядковому номеру гибридного поколения. Так первое поколение будет F 1, если гибридные особи скрещиваются между собой, то их потомство обозначают F 2 и т.д.

Родительские особи, взятые для скрещивания, могут отличаться как по одной контрастирующей паре признаков, так и по многим. Поэтому различают моногибридные и полигибридные скрещивания.

2. Моногибридное скрещивание

Моногибридным скрещиванием называют такое скрещивание при котором родительские формы различают лишь по одной паре альтернативных признаков. Например, материнское растение несет пурпурные цветки, а отцовское - белые, или наоборот.

Перед тем как производить скрещивание, необходимо убедиться в том, что избранные признаки родительских форм стойко наследуются в поколениях.

Родственные организмы воспроизводящие в ряду поколений одни и те же наследственно константные признаки, принято называть линией.

Скрещивание желт. х зел. желт.гладк. х морщ. гладк.

Следовательно, у гибрида первого поколения из каждой пары альтернативных признаков развивается только один. Это явление преобладания у гибрида признака одного из родителей Г. Мендель назвал доминирование.

Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным, противоположный, т.е. подавляемый признак - рецессивным.

Если гибриду первого поколения предоставить возможность самоопыляться, то в следующем поколении, т.е. в F 2 появляются растения с признаками обоих родителей. Это явление носит название расщепления.

Итак, проведя моногибридные скрещивания, Мендель установил следующие закономерности наследования:

1. У гибридов первого поколения проявляется только один из пары альтернативных признаков - доминантный, рецессивный же не проявляется. Это явление было названо первым законом Менделя, или законом единообразия гибридов первого поколения.

2. Во втором поколении гибридов появляются особи, как с доминантным признаком, так и с рецессивным. Отношение числа растений с доминантным признаком к числу растений с рецессивным признаком оказывается равным 3:1 . Это явление было названо вторым законом Менделя - законом расщепления.

В F 2 следует различать, во-первых, расщепление по внешнему проявлению признаков, которое выражается отношением 3:1, и, во-вторых, по наследственным задаткам, выражается соотношением 1:2:1. Первый тип расщепления называют расщеплением по фенотипу, а второй тип - по генотипу.

Термины «фенотип» и «генотип» введены в 1903г. В. Иогансеном.

Под генотипом понимают совокупность наследственных задатков, которыми обладает организм. Фенотип - это совокупность свойств и признаков организма, которые являются результатом взаимодействия генотипа особи и окружающей среды.

Мендель впервые применил символическое обозначение генетики, где наследственные факторы, определяющие парные альтернативные признаки, обозначались буквами латинского алфавита.

В 1926 г. В. Иогансен предложил назвать такую пару признаков аллельной и отдельный фактор одной пары назвать аллелью.

Под термином доминантная или рецессивная аллель стали понимать альтернативное состояние одного и того же гена.

Доминантную аллель принято обозначать заглавными буквами, рецессивную аллель - строчными.

Константные формы: АА или аа, которые в последующих поколениях не дают расщепления, называют гомозиготными, а формы, дающие расщепление - гетерозиготными.

Как видно у гибридов первого поколения рецессивная аллель а хотя и не проявляется, но и не смешивается с доминантной А, а во втором поколении обе аллели вновь проявляются в «чистом» виде. Такое явление можно объяснить исходя из допущения, что гибрид первого поколения Аа образует не гибридные а чистые гаметы, при этом указанные аллели оказываются в различных гаметах.

Не смешивание аллелей каждой пары альтернативных признаков в гаметах гибридного организма называют явлением чистоты гамет, в основе которого лежит цитологический механизм мейоза.

Рис. Образование гамет, решетка Пеннета

Анализируя моногибридное скрещивание, мы не обращали внимание на то, какое из растений было материнским, а какое - отцовским.

Надо отметить, что иногда имеются различия в передаче наследственных свойств со стороны материнского или отцовского организма. Поэтому направление скрещивания принято указывать.

Скрещивание двух форм между собой в двух разных направлениях называют реципрокным.

Так, при скрещивании двух форм Р1 и Р2 в одном направлении Р1 - материнская форма, Р2 - отцовская форма, а во втором - наоборот.

Для генетического анализа может быть использован и другой тип скрещивания - скрещивание гибрида с одной из родительских форм, несущей данную пару аллелей в гомозиготном состоянии. Такой тип скрещивания называют - возвратным скрещиванием.

Значительный интерес представляет скрещивание гибрида с формой, гомозиготной по рецессивному гену. По характеру расщепления в потомстве от такого скрещивания можно проанализировать наследственную структуру гибрида по данному гену. Отсюда и скрещивание гибридного организма с исходной формой, гомозиготной по рецессивному гену получило название анализирующего скрещивания.

3. Наследование при неполном доминировании

Всеобщность закона доминирования уже вскоре после его переоткрытия была подвергнута сомнению на основании целого ряда фактов. Некоторые из генетиков говорили только о правиле доминирования. Дело в том, что для огромного числа признаков у растений и животных характерно неполное доминирование в F1. Такое неполноедоминированиеотмечалось по ряду признаков у гороха самим Менделем.

При неполном доминировании гибрид F1 (Аа) не воспроизводит полностью ни одного из родительских признаков, выражение признака оказывается промежуточным, но все особи этого поколения проявляют единообразие по данному признаку.

Примером неполного доминирования может служить промежуточная розовая окраска цветка у гибридов ночной красавицы.

При неполном доминировании в потомстве гибрида имеет место совпадение расщепления по фенотипу и генотипу (1:2:1).

Неполное доминирование оказалось широко распространенным явлением, и было отмечено при изучении наследования окраски цветка у львиного зева, окраски оперения у кур, шерсти крупного рогатого скота и овец, а также по многим другим признакам.

4. Кодоминирование

Бывает, что в потомстве F1 проявляются признаки обоих родителей; т.е. 2 аллеля из одной пары оказывают совместное действие. При этом ни один из них не является ни доминантным, ни рецессивным. Это так называемое кодоминирование (АА"). Примером кодоминирования служит наследование групп крови у человека. Если один из родителей имеет группу крови А, а другой - В, то в крови их детей присутствуют антигены, характерные и для группы А, и для группы В; наличие этих антигенов может быть установлено соответствующей (антигенной) реакцией.

Таблица. Группы крови системы АВО

Первая группа 0(I) детерминируется геном I0, вторая А(II) - IА, третья В (III) - IВ. Гены IА и IВ доминантны по отношению к I0 и в то же время кодоминантны и имеют совместное фенотипическое выражение: у особей IА IВ развивается четвертая АВ (IV) группа крови.

Размещено на Allbest.ru

...

Подобные документы

    Принципы решения генетических задач. Гомозиготные организмы как представители "чистых линий". Гетерозиготные организмы при полном доминировании. Моногибридное и дигибридное скрещивание. Определение генотипов организмов по генотипам родителей и потомков.

    методичка , добавлен 06.05.2009

    Опыты Грегора Менделя над растительными гибридами в 1865 году. Преимущества гороха огородного как объекта для опытов. Определение понятия моногибридного скрещивания как гибридизации организмов, отличающихся по одной паре альтернативных признаков.

    презентация , добавлен 30.03.2012

    Гаметогенез и развитие растений. Основы генетики и селекции. Хромосомная теория наследственности. Моногибридное, дигибридное и анализирующее скрещивание. Сцепленное наследование признаков, генетика пола. Наследование признаков, сцепленных с полом.

    реферат , добавлен 06.07.2010

    Понятие дигибридного скрещивания организмов, различающихся по двум парам альтернативных признаков (по двум парам аллелей). Открытие закономерностей наследования моногенных признаков австрийским биологом Менделем. Законы наследования признаков Менделя.

    презентация , добавлен 22.03.2012

    Дигибридное и полигибридное скрещивание, закономерности наследования, ход скрещивания и расщепления. Сцепленное наследование, независимое распределение наследственных факторов (второй закон Менделя). Взаимодействие генов, половые различия в хромосомах.

    реферат , добавлен 13.10.2009

    Типы взаимодействия неаллельных генов. Теория Ф. Жакоба и Ж. Моно о регуляции синтеза и-РНК и белков. Дигибридное скрещивание при неполном доминировании. Неаллельные взаимодействия генов. Механизм регуляции генетического кода, механизм индукции-репрессии.

    реферат , добавлен 29.01.2011

    Представления о наследственности. Единообразие гибридов первого поколения. Скрещивание Менделя. Закон независимого наследования различных признаков. Гены-модификаторы и полигены. Построение генетических карт. Хромосомные аберрации по половым хромосомам.

    реферат , добавлен 06.09.2013

    Принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя. Скрещивание двух генетически различных организмов. Наследственность и изменчивость, их виды. Понятие о норме реакции.

    реферат , добавлен 22.07.2015

    Типы наследования признаков. Законы Менделя и условия их проявления. Сущность гибридизации и скрещивания. Анализ результатов полигибридного скрещивания. Основные положения гипотезы "Чистоты гамет" У. Бэтсона. Пример решения типовых задач о скрещивании.

    презентация , добавлен 06.11.2013

    История развития генетики как науки. Ее основные положения. В основе генетики лежат закономерности наследственности, обнаруженные австрийским биологом Г. Менделем при проведении им серии опытов по скрещиванию различных сортов гороха. Генная инженерия.

В опытах Менделя при скрещивании сортов гороха, которые имели желтые и зеленые семена, все потомство (гибриды первого поколения) оказалось с желтым семенами. При этом не имело значения, из какого именно семени (желтого или зеленого) выросли материнские (отцовские) растения: оба родителя в равной степени способны передавать свои признаки потомству. Аналогичные результаты были обнаружены и в опытах, в которых во внимание брались другие признаки – при скрещивании растений с гладкими и морщинистыми семенами все потомство имело гладкие семена. При скрещивании растений с пурпурными и белыми цветками у всех гибридов оказались лишь пурпурные лепестки цветков… Обнаруженная закономерность получила название первого закона Менделя, или закона единообразия гибридов первого поколения. Состояние (аллель) признака, проявляющегося в первом поколении, получило название доминантного, а состояние (аллель), которое в первом поколении гибридов не проявляется, называется рецессивным. «Задатки» признаков (по современной терминологии – гены) Г. Мендель предложил обозначать буквами латинского алфавита. Состояния, принадлежащие к одной паре признаков, обозначают одной и той же буквой, но доминантный аллель – большой, а рецессивный – маленькой.

Второй закон Менделя. Закон расщепления

При скрещивании гетерозиготных гибридов первого поколения между собой (самоопыления или родственное скрещивание) во втором поколении появляются особи как с доминантными, так и с рецессивными состояниями признаков, т. е. возникает расщепление, которое происходит в определенных отношениях: в опытах Менделя на 929 растений второго поколения оказалось 705 с пурпурными цветками и 224 с белыми. В опыте, в котором учитывался цвет семян, с 8023 семян гороха, полученных во втором поколении, было 6022 желтых и 2001 зеленых, а с 7324 семян, в отношении которых учитывалась форма семени, было получено 5474 гладких и 1850 морщинистых. Исходя из полученных результатов, Мендель пришел к выводу, что во втором поколении 75 % особей имеют доминантное состояние признака, а 25 % – рецессивное (расщепление 3:1). Эта закономерность получила название второго закона Менделя, или закона расщепления. Его формулировка: при скрещивании двух гибридов первого поколения, которые анализируются по одной альтернативной паре состояний признака, в потомстве наблюдается расщепление по фенотипу в соотношении 3:1 и по генотипу в соотношении 1:2:1.

Третий закон Менделя. Закон независимого наследования признаков

Изучая расщепления при дигибридном скрещивании, Мендель обратил внимание на следующее обстоятельство. При скрещивании растений с желтыми гладкими (ААВВ) и зелеными морщинистыми (aabb) семенами во втором поколении появлялись новые комбинации признаков: желтые морщинистое (Aabb) и зеленые гладкие (ааВЬ), которые не встречались в исходных формах. Из этого наблюдения Мендель сделал вывод, что расщепление по каждому признаку происходит независимо от второго признака. В приведенном примере форма семян наследовалась независимо от их окраски. Эта закономерность получила название третьего закона Менделя, или закона независимого распределения генов. Третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся по двум (или более) признакам, во втором поколении наблюдаются независимое наследование и комбинирование состояний признаков, если гены, которые их определяют, расположены в разных парах хромосом. Это возможно потому, что во время мейоза распределение (комбинирования) хромосом в половых клетках при их созревании идет независимо и может привести к появлению потомства с комбинацией признаков, отличных от родительских и прародительских особей.

Для записи скрещиваний нередко используют специальные решетки, которые предложил английский генетик Пеннет (решетка Пеннета). Ими удобно пользоваться при анализе полигибридных скрещиваний. Принцип построения решетки состоит в том, что сверху по горизонтали записывают гаметы отцовской особи, слева по вертикали – гаметы материнской особи, в местах пересечения – вероятные генотипы потомства.

Рис. 1. Решетка Пеннета

При моногибридном скрещивании исследуется наследование одного гена. В классическом моногибридном скрещивании каждый ген имеет два аллеля. Для примера мы возьмем материнский и отцовский организмы с одинаковым генотипом – «Gg». В генетике, как мы уже знаем, для обозначения доминантного аллеля используются заглавные буквы, а для рецессивного – строчные. Этот генотип может дать только два типа гамет, которые содержат или аллель «G» или аллель «g».

Наша решетка Пеннета будет выглядеть следующим образом:

Суммировав одинаковые генотипы в решетке Пеннета для нашего потомства мы получим следующее соотношение по генотипам: 1 (25 %) GG: 2 (50 %) GG: 1 (25 %) GG – это типичное соотношение генотипов (1:02:01) для моногибридного скрещивания. Доминантный аллель будет маскировать рецессивный аллель, что означает, что организмы с генотипами «GG» и «Gg» имеют один и тот же фенотип. Например, если аллель «G» дает желтый цвет и аллель «g» дает зеленый цвет, то генотип «gg» будет иметь зеленый фенотип, а генотипы «GG» и «Gg» – желтый фенотип. Суммировав значения в решетке мы будем иметь 3G (желтый фенотип) и lgg (зеленый фенотип) – это типичное соотношение по фенотипам (3:1) для моногибридного скрещивания. А соответствующие вероятности для потомства будут 75%G: 25%gg.

При дигибридных скрещиваниях исследуется наследование двух генов. Для дигибридных скрещиваний мы можем составить решетку Пеннета только в случае, если гены наследуются независимо друг от друга – это означает, что при образовании материнских и отцовских гамет в каждую из них может попасть любой аллель из одной пары вместе с любым другим из другой пары. Этот принцип независимого распределения был открыт Менделем в экспериментах по дигибридным и полигибридным скрещиваниям.

Мы имеем два гена – Формы и Цвета. Для формы: «R» – это доминантный аллель, определяющий гладкую форму и «w» – это рецессивный аллель, который дает морщинистую форму горошин. Для цвета: «Y» – это доминантный аллель, определяющий желтую окраску и «g» это рецессивный аллель дающий зеленую окраску горошин. Мужское и женское растения имеют одинаковый генотип – «RwYg» (гладкие, желтые).

Сначала необходимо определить все возможные комбинации гамет, для этого также можно использовать решетку Пеннета:

Таким образом, гетерозиготные растения могут дать четыре типа гамет со всеми возможными комбинациями: RY, Rg, wY, wg. Теперь составим решетку Пеннета для генотипов:

Суммировав одинаковые генотипы в решетке Пеннета, для нашего потомства мы получим следующее соотношение и вероятности по генотипам: 1(6,25 %) RRYY 2(12,5 %) RwYY: 1(6,25 %) wwYY: 2(12,5 %) RRYg: 4(25 %) RwYg: 2(12,5 %) wwYg: 1(6,25 %) RRgg: 2(12,5 %) Rwgg: 1(6,25 %) wwgg. А так как доминантные признаки маскируют рецессивные, то соотношение и вероятности по фенотипам мы получим такие: 9(56,25 %) R-Y – (гладкие, желтые): 3(18,75 %) R-gg (гладкие, зеленые): 3(18,75 %) wwY – (морщинистые, желтые): 1(6,25 %) wwgg (морщинистые, зеленые). Такое соотношение по фенотипам – 9:3:3:1 является типичным для дигибридного скрещивания.

Составить решетку Пеннета для скрещивания между двумя растениями гетерозиготными по трем генам будет более сложно. Вот решетка для генотипов (64 клетки).

Мы привели эти примеры для общего представления и расширения знаний по генетике – проблемы решения задач находятся не в сфере нашей дисциплины – основ психогенетики. Кроме того, само решение требует умения пользоваться полиномами и достаточно большого количества времени.

Вопросы и задания по теме 5

1. Подготовьте сообщения о жизни и научном творчестве Г. Менделя.

2. Расскажите подробно обо всех законах, открытых Г. Менделем.

3. Что собой представляет решетка Пеннета?

4. Подготовьте сообщения о роли Т. П. Моргана и его школы в развитии теории наследственности.

5. Как вы полагаете, в чем причина непринятия теории наследственности и генетики в нашей стране в определенные периоды развития науки?

На занятии мы рассмотрим моногибридное скрещивание. Обоснуем правило единообразия гибридов первого поколения и правило расщепления на основе изучения результатов опытов Грегора Менделя.

Как мы изучали ранее, чешский ученый Грегор Мендель использовал в опытах 22 сорта гороха, которые имели четкие различия по признакам (рис. 1).

Рис. 1. Различие сортов

Перед скрещением ученый получал чистые линии родительских растений по интересующим его признакам с помощью самоопыления.

Скрещивание растения по одному признаку называется моногибридным , по двум признакам называется дигибридным .

При скрещивании растений с альтернативными признаками Мендель отмечал, что один из этих признаков не наблюдается у растений первого поколения. Например, при скрещивании гороха с желтыми и зелеными семенами все гибриды первого поколения имели желтые семена (рис. 2).

Рис. 2. Схема скрещивания растений с альтернативными признаками

Признак желтой окраски или другие признаки, которые проявлялись в первом поколении, Мендель назвал доминантными . А те, которые не проявлялись, - рецессивными , или подавляемыми (рис. 3).

Рис. 3. Признаки

Доминантные признаки обозначают прописными латинскими буквами (А В С) , а рецессивные обозначают строчными латинскими буквами (а b c ) .

Результаты исследования Менделя объясняются воздействием мейоза, однако во времена ученого этот процесс еще не был открыт.

Признаки диплоидного организма определяются взаимодействиями между аллелями .

Аллель - одна из двух или более альтернативных форм гена. Они занимают одинаковые места, сайты или локусы, на гомологичных хромосомах (рис. 4).

Рис. 4. Расположение аллелей

Рассмотрим скрещивание с белыми и красными цветками.

Аллель белой окраски цветка, рецессивный признак, обозначим w , а доминантный аллель красной окраски - W (рис. 5).

Рис. 5. Обозначение признаков

В исследованиях Менделя растения с белыми цветками имели генотип ww , а растения с красными - WW . Особи с генами, которые определяют данный признак, идентичны (имеют две одинаковых аллели), называются гомозиготными особями . При скрещивании растений с данными генотипами все растения в F 1 получают аллель W от материнского растения с красными цветками, и аллель w от растения с белыми цветками, имеют генотип Ww и называются гетерозиготными по гену окраски цветка (рис. 6).

Рис. 6. Скрещивание растений гороха с красными и белыми цветками

Иначе говоря, если организм содержит два одинаковых аллельных гена, то такие организмы называются гомозиготными , если аллельные гены разные, то такие организмы называют гетерозиготными .

Мендель начал исследования со скрещивания растений гороха с разными цветами горошин (желтым, зеленым), и в первом поколении семена у всех растений были желтого цвета. Желтая окраска семян - доминантный признак (рис. 7).

Рис. 7. Скрещивание растений с желтыми и зелеными семенами

При повторе опыта по моногибридному скрещиванию Мендель использовал растения с гладкими и морщинистыми семенами, все растения первого поколения имели гладкие семена (рис. 8). Данная форма плодов является доминантным признаком.

Рис. 8. Скрещивание растений с гладкими и морщинистыми семенами

На основе полученных данных из экспериментов ученый сформулировал правило единообразия гибридов первого поколения:

При скрещивании двух гомозиготных особей, отличающихся по какому-то одному признаку, все потомки гибридов первого поколения (F 1) будут иметь признак одного из родителей, все поколение гибридов будет единообразно по данному признаку.

Мендель продолжил опыты, вырастив растения семян первого поколения. При скрещивании гибридов первого поколения, которые имели желтые семена, наблюдалось расщепление (рис. 9).

Рис. 9. Правило расщепления

¾ растений имели желтые семена, ¼ растений имела зеленые семена.

Явление, при котором скрещивание приводит к образованию части потомства с доминантными признаками и части потомства с рецессивным признаком, называется расщеплением .

Мендель подсчитывал число желтых и зеленых семян в потомстве от многих родительских пар скрещиваемого гороха для статистической надежности полученных результатов. Затем подтвердил характер расщепления гороха опытами с другими признаками, сформулировал правило расщепления:

При скрещивании двух потомков (гибридов) первого поколения между собой во втором поколении наблюдается расщепление и снова появляются особи с рецессивными признаками, эти особи составляют 1/4 часть от всего числа потомков второго поколения.

Список литературы

  1. Теремов А.В., Петросова Р.А. Биология. Биологические системы и процессы. 10 класс. - М.: 2011. - 223 с.
  2. Сивоглазов В.И. и др. Биология. Общая биология. 10-11класс. Базовый уровень. - 6-е изд., доп. - М.: Дрофа, 2010. - 384 с.
  3. Каменский А.А., Криксунов Е.А., Пасечник В.В. Биология. Общая биология. 10-11 класс. - М.: Дрофа, 2005. - 367 с.
  4. Пономарева И.Н. и др. Биология. 10 класс. Базовый уровень. - 2-е изд., перераб. - М.: 2010. - 224 с.
  5. Захаров В.Б. и др. Биология. Общая биология. Профильный уровень. 10 класс. - М.: 2010. - 352 с.
  1. Интернет портал «побиологии.рф» ()
  2. Интернет портал «botan.cc» ()
  3. Интернет портал «blgy.ru» ()

Домашнее задание

  1. Сформулируйте правило единообразия гибридов первого поколения.
  2. Сформулируйте правило расщепления.
  3. Чем определяются признаки диплоидного организма?

Моногибридное скрещивание включает анализ наследования признаков, определяемых лишь одной парой аллельных генов. Мендель определил, что при скрещивании особей, отличающихся одной парой признаков, все потомство фенотипически однообразно. Здесь имеется в виду скрещивание гомозиготных особей, различных фенотипически. Например, при скрещивании гомозиготного желтого гороха (генотип АА) с гомозиготным зеленым (генотип аа) все потомство будет желтым, но гетерозиготным (генотип Аа). Ход скрещивания изображен в первой ступени схемы на рис. 1. Получившиеся гетерозиготные особи называются гибридами, а поскольку они гетерозиготны по одной паре генов, их называют моногибридами.

Скрещиваемые особи могут быть не обязательно гомозиготными. Для случаев, когда обе особи гетерозиготны, Менделем установлено: при скрещивании моногибридов во втором поколении происходит расщепление признаков на исходные родительские в отношении 3:1. 3/4 потомков оказывается с признаками, обусловленными доминантным геном, 1/4 - с признаками рецессивного гена.

Как и почему происходит фенотипическое расщепление в отношении 3:1, можно понять из второй ступени схемы на рис. 1. Здесь важно обратить внимание на то, что у моногибридов образуется два типа гамет: гаметы с геном А и гаметы с геном а. И тех и других поровну. В процессе оплодотворения разные гаметы отцовского и материнского организмов имеют равновероятную возможность слиться друг с другом. Поэтому возможно формирование генотипов потомства: 1/4 АА, 2/4 Аа и 1/4 аа. Фенотипически первые три будут с проявлением доминантного гена, один из четырех - с проявлением рецессивного гена. Правда, точное расщепление 3: 1 можно получить лишь при анализе бесконечно большого числа потомков. В случаях же малого числа их можно говорить только о вероятности появления особей с тем или иным признаком.

В генетике различают еще возвратное и анализирующее скрещивание. Возвратное - это скрещивание гибрида с гомозиготной особью (третья ступень схемы на рис. 1). Анализирующее -скрещивание гибрида с гомозиготной особью по рецессивным генам аллеля (правая часть третьей ступени схемы на рис, 1).

Рис. 1. Сема анализа поколений при моногибридном скрещивании

В простейших случаях решения задач на моногибридное скрещивание достаточно анализа одной из ступеней, изображенных на рис. 1, хотя некоторые требуют исследования 2-3 поколений. Для записи результатов скрещивания используются следующие общепринятые обозначения:
Р родители (от лат. parental – родитель);
F – потомство (от лат. filial – потомство): F 1 – гибриды первого поколения – прямые потомки родителей Р ; F 2 – гибриды второго поколения – потомки от скрещивания между собой гибридов F 1 и тд.
– мужская особь (щит и копье – знак Марса);
– (зеркало с ручкой – знак Венеры);
x – значок скрещивания;
: – расщепление гибридов, разделяет цифровые соотношения отличающихся (по фенотипу или генотипу) классов потомков.

При решении задач на моногибридное скрещивание необходимо собдюдать следующие правила:
Правило первое . Если при скрещивании двух фенотипически одинаковых особей в их потомстве наблюдается расщепление признаков, то эти особи гетерозиготны.
Правило второе. Если в результате скрещивания особей, отличающихся фенотипически по одной паре признаков, получается потомство, у которого наблюдается расщепление по этой же паре признаков, то одна из родительских особей была гетерозиготна, а другая – гомозиготна по рецессивному признгаку.
Правило первое. Если при скрещивании фенотипически одинаковых (по одной паре признаков) особей в первом поколении гибридов происходит расщепление признаков на три фенотипические группы в отношениях 1:2:1, то это свидетельствует о неполном доминировании и о том, что родительские особи гетерозиготны.

Рассмотрим решение задачи на моногибридное скрещивание

Задача 1
У пшеницы карликовость доминирует над нормальным ростом. За эти признаки отвечают аутосомные аллельные гены. Гомозиготное карликовое растение скрестили с растением нормального роста.
Сколько растений нормального роста можно ожидать в F2 при скрещивании гибридов первого поколения друг с другом?
Решение:
Анализ условия задачи показывает, что скрещиваемые особи анализируются по одному признаку – росту, который представлен двумя альтернативными проявлениями: карликовый рост и нормальный рост. Причем сказано, что карликовость является доминантным признаком, а нормальный рост – рецессивным. Эта задача – на моногибридное скрещивание, и для обозначения аллелей достаточно будет взять одну букву алфавита. Изучаемый признак является аутосомным, поэтому для обозначения генов не надо использовать символы половых хромосом
(X и Y).
Составим таблицу «признак – ген», взяв для обозначения аллелей гена букву «А». Доминантный аллель обозначим прописной буквой А, рецессивный аллель – строчной буквой а.А - ген карликовости пшеницы;
а - ген нормального роста пшеницы.
Запишем генотипы родителей. Помним, что генотип организма включает в себя два аллеля изучаемого гена “А”. Карликовость – доминантный признак, поэтому карликовая пшеница имеет в своем генотипе аллель А. Второй аллель генотипа – тоже А, так как по условию задачи особь с доминантным признаком гомозиготна. Значит генотип карликовой пшеницы – АА.
Нормальный рост - рецессивный признак, поэтому пшеница нормального роста имеет в своем генотипе два аллеля а, так как только в этом случае рецессивный аллель проявится в фенотипе и сформируется рецессивный признак; если бы в генотипе был аллель А, то особь имела бы доминантный признак карликовости. Таким образом, генотип пшеницы нормального роста – аа.

Моногибридным называют такое скрещивание, в котором родительские формы различаются по одной паре альтернативных, контрастных признаков. Например, отцовское растение имеет пурпурные цветки, а материнское - белые или наоборот.

Рассмотрим результаты моногибридного скрещивания на примере наследования окраски цветка у гороха, на котором и произвел Мендель свои классические опыты. Если материнское растение имело пурпурные цветки, а отцовские - белые, то цветки всех гибридных растений F 1 оказываются пурпурными, белая окраска цветков не проявляется.

Следовательно, у гибрида F 1 из пары альтернативных признаков развивается только один, второй признак не проявляется. Явление преобладания у гибрида первого поколения признака одного из родителей Мендель назвал доминированием. Признак, проявляющийся у гибрида и подавляющий развитие другого альтернативного признака, был назван доминантным; подавляемый - рецессивным. Это явление оказалось универсальным для растений, животных и человека и потому было возведено в ранг закона (рис. 8).

Рис. 8. Наследование пурпурной и белой окрасок цветов у гороха:

А-фактор пурпурной окраски; а-фактор белой окраски

Закон доминирования - первый закон Менделя - называют также законом единообразия гибридов первого поколения, так как все они одинаковы.

Если гибриду первого поколения представляется возможность самоопыляться, то в следующем поколении, т.е. в F 2 , появляются растения с признаками обоих родителей - с пурпурными и белыми цветками. Эта закономерность, заключающаяся в появлении во втором поколении признаков обоих родительских организмов (доминантных и рецессивных), носит название расщепления. Расщепление оказывается не случайным, а подчиняется определенным количественным закономерностям, а именно в среднем 3 / 4 от общего числа растений несут пурпурные цветки и лишь 1 / 4 - белые. Отношение числа растений с доминантным признаком к числу растений с рецессивным признаком оказывается равным 3: 1. Следовательно, рецессивный признак у гибрида первого поколения не исчез, а был только подавлен и проявился во втором поколении.

Расщепление в F 2 в определенном количественном соотношении доминантных и рецессивных признаков было названо законом расщепления, или вторым законом Менделя.

| следующая лекция ==>