Индукционное вихревое электрическое поле конспект и презентация. План-конспект урока по физике. Вихревое электрическое поле. Тема. Закон электромагнитной индукции


ЭЛЕКТРИЧЕСКОЕ ПОЛЕ Причина возникновения электрического тока в неподвижном проводнике - электрическое поле. Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.


Вихревое поле. Индукционное электрическое поле является вихревым. Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока. Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.


Электрическое поле - вихревое поле. электростатическое поле 1. создается неподвижными электрическими зарядами 2. силовые линии поля разомкнуты - - потенциальное поле 3. источниками поля являются электрические заряды 4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. индукционное электрическое поле (вихревое электрическое поле) 1. вызывается изменениями магнитного поля 2. силовые линии замкнуты - - вихревое поле 3. источники поля указать нельзя 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции

Переменное магнитное поле порождает инду­цированное электрическое поле . Если магнитное поле постоянно, то индуциро­ванного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами , как это имеет место в случае элект­ростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя , подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле , подобно магнитному, является вихревым.

Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возни­кает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.

Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.

Это фундаментальное положение электродинамики установлено Максвел­лом как обобщение закона электромагнитной индукции Фарадея.

В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.

Направление вектора напряженности вихревого электрического поля уста­навливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.

Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, со­измеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов - бетатронов.

Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Отличие вихревого электрического поля от электростатического

1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.

электростатическое поле

индукционное электрическое поле
(вихревое электр. поле)

1. создается неподвижными электр. зарядами 1. вызывается изменениями магнитного поля
2. силовые линии поля разомкнуты - потенциальное поле 2. силовые линии замкнуты - вихревое поле
3. источниками поля являются электр. заряды 3. источники поля указать нельзя
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции

Слайд 2

Проверка домашнего задания

Сообщение о Э.Х. Ленце (подготовленное учеником)

Слайд 3

Физический диктант:

1. В чем заключается явление электромагнитной индукции? 2. При каком условии возникает ток в замкнутом проводящем контуре? 3.-4 Продолжите фразы: 3. Магнитным потоком через поверхность площадью S называют величину… 4. Согласно правилу Ленца возникающий в замкнутом контуре индукционный ток…

Слайд 4

5. Сформулируйте Закон электромагнитной индукции. 6. 7. 8. S N V Проводник движется поперек линий магнитного поля справа налево. Определите направление индукционного тока. V Определите направление вектора магнитной индукции и полярность постоянного магнита. S Определите полярность напряжения индукции.

Слайд 5

Вихревое электрическое поле.

Когда возникает ЭДС индукции? ЭДС индукции возникает либо в неподвижном проводнике, помещенном в изменяющееся со временем поле, либо в проводнике, движущемся в магнитном поле, которое может и не меняться со временем.

Слайд 6

Слайд 7

МАКСВЕЛЛ (Maxwell) Джеймс Клерк (Clerk) (1831-79), английский физик, создатель классической электродинамики, один из основоположников статистической физики, организатор и первый директор (с 1871) Кавендишской лаборатории. Развивая идеи М. Фарадея, создал теорию электромагнитного поля (уравнения Максвелла); ввел понятие о токе смещения, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света. Установил статистическое распределение, названное его именем. Исследовал вязкость, диффузию и теплопроводность газов. Показал, что кольца Сатурна состоят из отдельных тел. Труды по цветному зрению и колориметрии (диск Максвелла), оптике (эффект Максвелла), теории упругости (теорема Максвелла, диаграмма Максвелла - Кремоны), термодинамике, истории физики и др.

Слайд 8

Изменяясь во времени, магнитное поле порождает электрическое поле

Слайд 9

Слайд 10

Работа вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.

Слайд 11

Слайд 12

В чем отличие вихревого электрического поля от потенциального?

Слайд 13

Жан Берна́р Лео́н Фуко́18 сентября1819, Париж - 11 февраля1868, - французский физик и астроном, член Парижской АН Токи Фуко Применение индукционные печи Во многих случаях токи Фуко бывают нежелательными, поэтому приходится принимать специальные меры для их уменьшения. В частности, эти токи вызывают нагревание ферромагнитных сердечников трансформаторов и металлических частей электрических машин. Для снижения потерь электрической энергии из-за возникновения вихревых токов сердечники трансформаторов изготавливают не из сплошного куска ферромагнетика, а из отдельных металлических пластин, изолированных друг от друга диэлектрической прослойкой.

Цель урока : сформировать понятие, что ЭДС индукции может возникать или в неподвижном проводнике, помещенном в изменяющееся магнитное поле, или в движущемся проводнике, находящемся в постоянном магнитном поле; закон электромагнитной индукции справедлив в обоих случаях, а происхождение ЭДС различно.

Ход урока

Проверка домашнего задания методом фронтального опроса и решения задач

1. Какая величина изменяется пропорционально скорости изменения магнитного потока?

2. Работа, каких сил создает ЭДС индукции?

3. Сформулировать и записать формулу закона электромагнитной индукции.

4. В законе электромагнитной индукции стоит знак «минус». Почему?

5. Какова, ЭДС индукции в замкнутом витке провода, сопротивление которого 0,02 Ом, а индукционный ток 5 А.

Решение. Ii = ξi /R; ξi= Ii·R; ξi= 5·0,02= 0,1 B

Изучение нового материала

Рассмотрим, как возникает ЭДС индукции в Неподвижном проводнике, находящимся в переменном магнитном поле. Проще всего это понять на примере работы трансформатора.

Одна катушка замыкается на сеть переменного тока, если вторая катушка замкнута, то в ней возникает ток. Электроны в проводах вторичной обмотки придут в движение. Какие же силы двигают свободные электроны? Магнитное поле сделать этого не может, так как действует только на движущиеся электрические заряды.

Свободные электроны приходят в движение под действием электрического поля, которое было создано переменным магнитным полем.

Таким образом, мы подошли к понятию нового фундаментального свойства полей: Изменяясь во времени, магнитное поле порождает электрическое поле. Этот вывод сделал Дж. Максвелл.

Таким образом, в явлении электромагнитной индукции – главное – это создание магнитным полем электрического поля. Это поле приводит в движение свободные заряды.

Структура этого поля другая, чем у электростатического. Оно не связано с электрическими зарядами. Линии напряженности не начинаются на положительных и не заканчиваются на отрицательных зарядах. Такие линии не имеют начала и конца – это замкнутые линии похожие на линии индукции магнитного поля. Это вихревое электрическое поле.

ЭДС индукции в неподвижном проводнике, помещенном в переменное магнитное поле равна работе вихревого электрического поля перемещающего заряды вдоль этого проводника.

Токи Фуко (французский физик)

Польза и вред индукционных токов в массивных проводниках.

Где применяют ферриты? Почему в них не возникают вихревые токи?

Закрепление изученного материала

- Объяснить природу сторонних сил действующих в неподвижных проводниках.

Разница между электростатическим и вихревым электрическими полями.

Плюсы и минусы токов Фуко.

Почему не возникают вихревые токи в ферритовых сердечниках?

Вычислить ЭДС индукции в контуре проводника, если магнитный поток изменился за 0,3 с на 0,06 Вб.

««Явление электромагнитной индукции» физика» - К первичной обмотке подключена переменная ЭДС. Сила тока. Выражения для циркуляции справедливы всегда. Индукционный ток обусловлен изменением потока вектора магнитной индукции. Работа по перемещению единичного заряда вдоль замкнутой цепи. Механическая энергия его возрастает. Явление самоиндукции открыл американский ученый Дж. Генри.

«Индукция поля» - Работа по перемещению единичного заряда. Тормозящее действие. Проводник. Заряды. Токи высокой частоты. Классическая электродинамика. Часть выражения. Индукционные токи. Проводник неподвижен. Контур. Ток практически равномерно распределен по объему проводов. Фарадей Майкл. Магнитное поле. Проводники в ВЧ.

«Изучение явления электромагнитной индукции» - Механизм возникновения. Закон Фарадея универсален. Переменное магнитное поле. Закон электромагнитной индукции. Отличия вихревого электрического поля от электростатического. Токи (токи Фуко) замкнуты в объёме. Движение медной гребенки. Сила Лоренца. Поток магнитной индукции. DФВ. Токи Фуко. Формула Стокса.

«Электромагнитная индукция» - Синквейн. Майкл Фарадей. Явление. Видеофрагмент. Северный кончик стрелки. Опыты Фарадея. Тест-лист с заданиями. Историческая справка. Электромагнитная индукция и прибор. Китайская мудрость. Индукционный ток. Разминка. Явление электромагнитной индукции. Острие. Проводник. Униполярная индукция. Магнитная стрелка.

«Самоиндукция и индуктивность» - Единицы измерения. Индуктивность. Индуктивность катушки. Магнитный поток через контур. Энергия магнитного поля. Явление возникновения ЭДС. Вывод в электротехнике. Самоиндукция. Проявление явления самоиндукции. Энергия магнитного поля тока. Магнитный поток. Величина. Проводник. ЭДС самоиндукции.

«Электромагнитная индукция Фарадея» - Вопросы. Время движения магнита. решение задач линейной структуры. Открыто Фарадеем. Принцип действия генератора. Внешний вид генератора. Явление ЭМИ. Физкультминутка. Индукционный ток. Явление электромагнитной индукции. Опыт. Систематизировать знания.

Всего в теме 18 презентаций