Распространенность элементов в космосе. Химия и космос. химия земли к сожалению, человек научился использовать только те материалы, которые находятся на поверхности земли, но земные ресурсы. Самый распространенный в космическом пространстве химический эле

В окружающей нас земной обстановке нет ничего, что хотя бы в отдаленной степени напоминало сверхразреженную межзвездную среду. Самым легким веществом обычно принято считать воздух. Однако по сравнению с любой межзвездной туманностью воздух выглядит образованием необычно плотным.

Кубический сантиметр комнатного воздуха имеет массу, близкую к одному миллиграмму; масса туманности Ориона в том же объеме в 100 000 000 000 000 000 (10 17) раз меньше. Прочесть это число нелегко. Но еще труднее наглядно представить себе столь большую степень разреженности вещества.

Плотность межзвездных газовых туманностей (10-20 г/см З) так ничтожна мала, что массой в один миллиграмм будет обладать газовое облако объемом в 100 кубических километров!

В технике стремятся в некоторых случаях получить вакуум - весьма разреженное состояние газов. Путем довольно сложных ухищрений удается уменьшить плотность комнатного воздуха в 10 миллиардов раз. Но и такая «техническая пустота» все же оказывается в миллион раз более плотной, чем любая газовая туманность!

В комнатном воздухе молекул так много, что им приходится непрерывно сталкиваться друг с другом. Ни одной из них не у дается пролететь более чем тысячную долю сантиметра, чтобы не столкнуться с какой-нибудь из своих соседок. В газовых туманностях простора куда больше. Каждый из атомов может здесь спокойно лететь миллионы километров, не опасаясь столкновения с другим атомом.

Не только на Земле, но и в пределах Солнечной системы мы не знаем образований, которые по своей разреженности могли бы соперничать с газовыми туманностями. Даже кометы выглядят рядом с туманностями столь же плотными, как сталь по сравнению с воздухом. Плотность газов в головах комет в тысячи раз больше плотности межзвездных туманностей.

Может показаться странным, почему столь разреженная среда на фотографиях кажется сплошным и даже плотным светящимся облаком, тогда как воздух настолько прозрачен, что почти не искажает наблюдаемую сквозь него картину Вселенной. Причина заключается, конечно, в размерах туманностей. Они так грандиозны, что представить себе объем, ими занимаемый, нисколько не легче, чем ничтожную их плотность.

В среднем туманности имеют поперечники, измеряемые световыми годами или даже десятками световых лет. Это означает, что если Землю уменьшить до размеров булавочной головки, то в таком масштабе туманность Ориона должна быть изображена облаком величиной с земной шар! Поэтому, несмотря на ничтожную плотность составляющих её газов, вещества туманности Ориона все же вполне хватило бы на «изготовление» нескольких сотен таких звезд, как наше Солнце.

Мы находимся от туманности Ориона на расстоянии, которое свет преодолевает за 1800 лет. Благодаря этому мы видим её всю целиком. Если же в будущем при межзвездных перелетах путешественники окажутся внутри туманности Ориона, то заметить это будет нелегко - рассматриваемая «изнутри» эта замечательная туманность покажется почти идеально прозрачной.

Свечение газовых туманностей может быть вызвано разными причинами. В тех случаях, когда соседняя с туманностью звезда весьма горяча (с температурой поверхности, большей 20000 К), атомы туманности переизлучают энергию, получаемую от звезды, и процесс свечения носит характер люминесценции. С другой стороны, постоянно движущиеся газовые облака иногда сталкиваются друг с другом и энергия столкновения частично преобразуется в излучение. Разумеется, эти причины могут действовать и совместно.

Как ни эфемерны по своей плотности газовые туманности, межзвездная среда еще в десять тысяч раз более разрежена. Согласитесь, что межзвездной газовой среде название «видимое ничто» подходит в гораздо большей степени, чем кометам.

— Зверь и птица, звёзды и камень — все мы одно, все одно... — бормотала Кобра, опустив свой клобук и тоже раскачиваясь. — Змея и ребёнок, камень и звезда — все мы одно...

Памела Треверс. «Мэри Поппинс»

Чтобы установить распространённость химических элементов во Вселенной, нужно определить состав её вещества. А оно сосредоточено не только в крупных объектах — звёздах, планетах и их спутниках, астероидах, кометах. Природа, как известно, не терпит пустоты, поэтому и космическое пространство заполнено межзвёздными газом и пылью. К сожалению, нам для непосредственного изучения доступно лишь земное вещество (и только то, которое «под ногами») да очень небольшое количество лунного грунта и метеориты — обломки некогда существовавших космических тел.

Как же определить химический состав объектов, удалённых от нас на тысячи световых лет? Получать всю необходимую для этого информацию стало возможным после разработки в 1859 г. немецкими учёными Густавом Кирхгофом и Робертом Бунзеном метода спектрального анализа. А в 1895 г. профессор Вюрцбургского университета Вильгельм Конрад Рентген случайно обнаружил неизвестное излучение, которое учёный назвал Х-лучами (ныне они известны как рентгеновские). Благодаря этому открытию появилась рентгеновская спектроскопия, которая позволяет непосредственно по спектру определять порядковый номер элемента.

В основе спектрального и рентгеноспектрального анализа лежит способность атомов каждого химического элемента излучать или поглощать энергию в виде волн строго определённой, только ему одному свойственной длины, что и улавливают специальные приборы — спектрометры. Атом испускает волны видимого света при переходах электронов на внешних уровнях, а за рентгеновское излучение отвечают более «глубинные» электронные слои. По интенсивности определённых линий в спектре и узнают содержание элемента в том или ином небесном теле.

К концу XX в. исследованы спектры многих объектов во Вселенной, накоплен огромный статистический материал. Разумеется, данные о химическом составе космических тел и межзвёздного вещества не окончательны и постоянно уточняются, но благодаря уже собранным сведениям удалось установить среднее содержание элементов в космосе.

Все тела во Вселенной состоят из атомов одних и тех же химических элементов, но содержание их в разных объектах различно. При этом наблюдаются интересные закономерности. Лидеры по распространённости — водород (его атомов в космосе — 88,6 %) и гелий (11,3 %). На долю остальных элементов приходится всего 1 %! В звёздах и планетах распространены также углерод, азот, кислород, неон, магний, кремний, сера, аргон и железо. Таким образом, лёгкие элементы преобладают. Но есть и исключения. Среди них — «провал» в области лития, бериллия и бора и низкое содержание фтора и скандия, причина которого до сих пор не установлена.

Выявленные закономерности можно представить в виде графика. Внешне он напоминает старую пилу, зубья которой сточились по-разному, а некоторые вообще сломались. Верхушки зубьев соответствуют элементам с чётными порядковыми номерами (т. е. тем, у которых количество протонов в ядрах чётное). Данная закономерность носит название правила Олдо — Харкинса в честь итальянского химика Джузеппе Оддо (1865—1954) и американского физика и химика Уильяма Харкинса (1873— 1951). Согласно этому правилу, распространённость элемента с чётным зарядом больше, чем его соседей с нечётным количеством протонов в ядре. Если же у элемента и количество нейтронов чётное, то он встречается ещё чаше и изотопов образует больше. Во Вселенной существует 165 стабильных изотопов, у которых и число нейтронов, и число протонов чётное; 56 изотопов с чётным числом протонов и нечётным — нейтронов; 53 изотопа, у которых число нейтронов чётное, а протонов — нечётное; и всего 8 изотопов с нечётным количеством и нейтронов, и протонов.

Бросается в глаза и ещё один максимум, приходящийся на железо — один из наиболее распространённых элементов. На графике его зубец возвышается, как Эверест. Это связано с большой энергией связи в ядре железа — самой высокой среди всех химических элементов.

А вот и сломанный зуб у нашей пилы — на графике нет значения распространённости технеция, элемента № 43, вместо него здесь пробел. Казалось бы, что в нём такого особенного? Технеций находится в середине периодической системы, распространённость его соседей подчиняется общим закономерностям. А дело вот в чём: этот элемент просто-напросто давно «закончился», период полураспада его самого долгоживущего изотопа 2,12.10 6 лет. Технеций даже не был открыт в традиционном понимании этого слова: его синтезировали искусственно в 1937 г., и то случайно. Но вот что интересно: в 1960 г. в спектре Солнца была обнаружена линия «несуществующего» элемента № 43! Это блестящее подтверждение того факта, что синтез химических элементов в недрах звёзд продолжается и поныне.

Второй сломанный зуб — отсутствие на графике прометия (№ 61), и объясняется оно теми же причинами. Период полураспада самого устойчивого изотопа этого элемента очень мал, всего 18 лет. И пока нигде в космосе он не дал о себе знать.

Совсем нет на графике и элементов с порядковыми номерами больше 83: все они тоже очень нестабильны, и в космосе их исключительно мало.

Природа щедро разбросала свои материальные ресурсы по нашей планете. Но нетрудно заметить зависимость: чаще всего человек использует те веще­ства, запасы сырья которых ограничены, и наоборот, крайне слабо использует такие химические элементы и их соединения, сырьевые ресурсы которых почти без­граничны. В самом деле, 98,6% массы физически доступного слоя Земли со­ставляют всего восемь химических элементов: железо (4,6%) , кислород (47%), кремний (27,5%), магний (2,1%), алюминий (8,8%), кальций (3,6%), натрий (2,6%), калий (2,5%), никель. Более 95% всех металлических изделий, конст­рукций самых разнообразных машин и механиз­мов, транспортных путей произ­водятся из железорудного сырья. Ясно, что такая практика расточительна с точки зрения как ис­черпания ресурсов железа, так и энергетических затрат на пер­вичную обработку железорудного сырья.

Глядя на приведенные здесь данные о распространенности восьми названных химических элементов, можно смело утвер­ждать о больших возможностях в ис­пользовании алюминия, а затем магния и, может быть, кальция в создании ме­таллических материалов ближайшего будущего,но для этого должны быть раз­работаны энергоэкономичные методы производства алюминия с целью получе­ния хлорида алюминия и восстановле­ния последнего до металла. Этот метод был уже опробован в ря­де стран и дал основание для проектирования алюми­ниевых за­водов большой мощности. Но выплавка алюминия в масштабах, со­поставимых с производством чугуна, стали и ферросплавов, еще не может быть реализована в самое ближайшее время, по­тому что эта задача должна решаться параллельно с разработкой соответствующих алюминиевых сплавов, способных конкуриро­вать с чугуном, сталью и другими материалами из железорудного сы­рья.

Широкая распространенность кремния служит посто­янным укором человече­ству в смысле чрезвычайно низкой сте­пени использования этого химического элемента в производстве материалов. Силикаты составляют 97% всей массы земной коры. И это дает основание утверждать, что именно они должны быть основным сырьем для производства практически всех строительных материалов и полуфабрикатов при изготовлении керамики, способной конкурировать с ме­таллами. Надо, кроме того, принимать во внимание еще и огромные скопления промышленных отходов силикатного характера, таких, как "пустая порода" при добыче угля, "хвосты" при добыче металлов из руд, зола и шлаки энергетиче­ского и металлургического производст­ва. И как раз эти силикаты необходимо в первую очередь превращать в сырье для строительных материалов. С одной стороны, это обещает большие выгоды, так как сырье не надо добывать, оно в готовом виде ждет своего потребителя. А с другой - его утилизация является мерой борьбы с загрязнением окружающей среды.

В космосе наиболее широко распространены лишь два элемента - водород и гелий, все остальные элементы можно рассматри­вать только как дополнение к ним.

Вопрос 54. Развитие представлений о химическом строение вещества. Химиче­ские соединения.

Химией называют науку о химических элементах и их соедине­ниях.

История развития химических концепций начинается с древних времен. Де­мокрит, Эпикур высказывали гениальные мысли о том, что все тела состоят из атомов различной величины и разной формы, что и обусловливает их качест­венное различие. Аристо­тель и Эмпедокл считали, что в телах сочетаются

Первый по-настоящему действенный способ определения свойств вещества был предложен во второй половине XVII в. английским ученым Р. Бойлем (1627-1691).Результаты экспериментальных исследований Р. Бойля пока­зали, что качества и свойства тел зависят от того, из каких ма­териальных элементов они состоят.

В 1860 г. выдающимся русским химиком А.М. Бутлеровым (1828-1886) была создана теория химического строения вещества - возник более высокий уровень развития химических знаний - структурная химия.

В этот период зарождалась технология органических веществ.

Под влиянием новых требований производства возникло учение о химиче­ских процессах, в котором учитывалось изменение свойств вещества под влия­нием температуры, давления, раство­рителей и других факторов, заменяющих дерево и металл в строительных работах, пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов.

В 1960-1970 гг. появился следующий, более высокий, уровень химических знаний - эволюционная химия. В основе ее лежит принцип самоорганизации химических систем, т. е. принцип применения химического опыта высокоорга­низованной живой природы.

До недавнего времени химики считали ясным, что следует относить к хими­ческим соединениям, а что - к смесям. Еще в 1800-1808 гг. французский уче­ный Ж. Пруст (1754-1826) установил закон постоянства состава: любое инди­видуальное химическое соединение обладает строго определенным, неизмен­ным составом, прочным притяжением составных частей (атомов) и тем отлича­ется от смесей

С конца XIX в. возобновились исследования, подвергавшие сомнению абсо­лютизацию закона постоянства состава. Выдаю­щийся русский химик Н.С. Кур­наков (1860-1941) в результате исследований интерметалличе­ских соедине­ний, т. е. соединений, состоящих из двух металлов, установил образование на­стоящих индивидуаль­ных соединений переменного состава и нашел границы их од­нородности на диаграмме "состав-свойство", отделив от них об­ласти сущест­вования соединений стехиометрического состава. Химические соединения пе­ременного состава он назвал бертоллидами , а за соединения­ми постоянного со­става оставил названиедальтониды .

Как показали результаты физических исследований, суть проблемы химиче­ских соединений состоит не столько в посто­янстве или непостоянстве химиче­ского состава, сколько в физи­ческой природе химических связей, объединяю­щих атомы в единую квантово-механическую систему - молекулу.

Число химических соединений огромно. Они отличаются как составом, так и химическими и физическими свойствами. Но все же химическое соединение - качественно определенное веще­ство, состоящее из одного или нескольких хи­мических элемен­тов.

Распространенность элементов в космосе изучает космохимия, а их распространенность на земле-геохимия. В межзвездном пространстве встречаются ионы и атомы различных элементов, а также группы атомов, радикалы и даже молекулы. Особенно много в межзвездном пространстве ионов Са. Кроме него в космосе рассеяны атомы Н, К, С, ионы натрия, О, титана и др. частицы. Первое место по распространенности во вселенной принадлежит водороду. Хим. состав звезд зависит от многих факторов, в том числе и от температуры. По мере повышения температуры состав частиц, существующих в атмосфере звезды, упрощается. Так, спектральный анализ звезд с Т=10000-50000 показывает в их атмосферах линии ионизированных водорода и гелия и ионы металлов. В атмосферах звезд с Т=5000 обнаруживаются уже радикалы, а в атмосферах звезд с Т=3800 даже молекулы оксидов. В молодых звездах типа красных гигантов присутствует повышенное количество тяжелых металлов. Химический состав звезды отражает влияние двух факторов: природы межзвездной среды и тех ядерных реакций, которые развиваются в звезде в течение ее жизни. Начальный состав звезды близок к составу межзвездной материи (газопылевого облака), из которого возникла звезда. Существуют звезды, в которых водород превратился в гелий. Их атмосфера состоит из гелия. Углеродные звезды-это относительно холодные звезды, их Т=5000-6000. С увеличением атомной массы элемента уменьшается его распространеность, четные элементы встречаются чаще, чем нечетные. Распространенность элементов в солнечной системе. Атмосфера солнца находится в постоянном движении. Обнаружено 72 элемента. Больше всего Н-75%, Не-24%, 1,2% на остальные элементы. Довольно много О, С, азота, натрия, железа, никеля, мало лития.

Кларки.

Кларки элементов - числа выражающие среднее содержание элементов в земной коре, гидросфере земли в целом, космических тел и др. геохимических и космических систем. Различают весовые и атомные кларки. Элементы с четным порядковым слагают 87% массы земной коры, а с нечетными только 13%, средний химический состав земли в целом рассчитывался на основании данных о содержании элементов в метеоритах. Кларк служит эталоном сравнения пониженных или повышенных концетраций элементов в месторождениях п/и горных пород или целых регионов. Знание их важно при поиске и промышленной оценки месторождений п/и. Главные элементы: О, S, Al, Fe, Ca, Na, K, Mg, Ti, Mn. Количество кларка уменьшается по мере увеличения номера элемента, количество легких элементов до железа снижается быстрее, чем тяжелых.



В земной коре: O2 – 47 Si – 29 Al – 8 Fe – 5 Ca – 3 Na – 3 K – 3 Mg – 2 Ti 0,5 Mn – 0.1

Концентрация и рассеяние элементов.

Все элементы есть везде, в каждом грамме воды, горной породе, речь идет только о недостаточности чувствительных современных методов анализа. Это положение о всеобщем рассеяние элементов. Факторы для рассеивания элементов:

1. неспособность давать соединения (He, Ar, Kr, Xe).

2. низкая температура плавления и кипения, вследствие чего такие элементы пика переходят в газообразное состояние и рассеиваются.

3. низкие потенциалы ионизации, вследствие чего ионы легко переходят в возбужденное состояние.

4. низкая валентность

5. большая растворимость главнейших солей и соединений данного элемента.

Факторы концентрации:

1. средние (высокие) значения элементов

2. высокие температуры плавления и кипения

3. среднее значение валентности и особенно четные

4. средние, скорее низкие значения радиусов атомов и ионов

5. средний потенциал ионизации

6. четность атомных ионов

7. большая плотность

Концентрация вещества в природных системах 0

Закон Вернадского о рассеяние элементов.

Везде есть все. Концентрация вещества в природных системах 0

Метеориты.

Метеориты представляют собой обломки космической материи, 2 типа: каменные и железные, или силикатные и металлические. В их веществе выделяются 3 фазы:

1. железоникелевая или металлическая

2. сульфидная или троилитовая

3. каменная или силикатная.

Каменные делятся на хондриты и ахондриты.

Хондриты-примитивный тип метеоритов, представляют собой продукты значительно более сложных процессов химической дифференциации вещества. Они состоят из оливина, пироксена, никелистого железа и плагиоклаза.

Ахондриты-группа каменных метеоритов характеризуется большим разнообразием. Они обладают кристаллической структурой, многие из них имеют большое сходство с изверженными породами на земле. Делятся на 2 группы: бедные и богатые кальцием.



16-1 Отличия элементного состава литосферы земли от состава поверхности луны, марса, венеры и планет-гигантов.

Венера близка по размерам и средней плотности к земле. Обладает наиболее плотной и мощной атмосферой из всех внутренних планет. Атмосфера планеты состоит почти целиком из СО2 (93-97%), обнаружено присутствие кислорода, азота, воды, содержание азота вместе с инертными газами достигает 2-5%, а количество О-0,4%, Т=747 К, а Р=90*10^5 Па. Марс обладает самой низкой плотностью, имеется разреженная атмосфера, атмосферное давление у поверхности не превышает 800 Па на 2 порядка меньше, чем на земле. Основной компонент атмосферы СО2, обнаружено содержание примеси NO2, содержание О2 и О3 пренебрежительно мало. Луна – лишенная атмосферы. Повышенные гравитационные аномалии в районах лунных морей. По косвенным данным можно допустить, что в составе внешних планет много гелия. В центральных частях внешних планет гелия (уран, нептун, юпитер, сатурн).

Распространенность элементов в космосе изучает космохимия.

Изучение распространенности элементов в космосе -довольно сложная задача, так как вещество в космическом пространстве находится в различном состоянии (звезды, планеты, пылевые облака, межзвездное пространство и т. д.). Иногда состояние вещества трудно представить. Например, сложно говорить о состоянии вещества и элементов в нейтронных звездах, белых карликах, черных дырах при колоссальных температурах и давлениях. Тем не менее науке достаточно много известно о том, какие элементы и в каких количествах есть в космосе. В межзвездном пространстве встречаются ионы и атомы различных элементов, а также группы атомов, радикалы и даже молекулы, например молекулы формальдегида, воды, HCN, CH3CN, CO, SiO2, CoS и др. Особенно много в межзвездном пространстве ионов кальция. Кроме него, в космосе рассеяны атомы водорода, калия, углерода, ионы натрия, кислорода, титана и другие частицы. Первое место по распространенности во Вселенной принадлежит водороду.

Химический состав звезд зависит от многих факторов, в том числе и от температуры. По мере повышения температуры состав частиц, существующих в атмосфере звезды, упрощается. Так, спектральный анализ звезд с температурой 10000-50000° С показывает в их атмосферах линии ионизированных водорода и гелия и ионы металлов. В атмосферах звезд с температурой 5000° С обнаруживаются уже радикалы, а в атмосферах звезд с температурой 3800° С - даже молекулы оксидов. Химический состав некоторых звезд с температурами 20 000-30 000° С приведен в табл. 1.1. Видно, что, например, в звезде у-Пегаса на 8700 атомов водорода приходится 1290 атомов гелия, 0,9 атома азота и т. д.

В спектрах звезд первых 4 классов (самых горячих) преобладают линии водорода и гелия, но по мере понижения температуры появляются линии других элементов и даже линии соединений. Это еще простые соединения: оксиды циркония, титана, а также радикалы СН, ОН, NH, CH2, C2, С3, СаН и др. Наружные слои звезд состоят главным образом из водорода. В среднем на 1 0 000 атомов водорода приходится около 1 000 атомов гелия, 5 атомов кислорода и менее 1 атома других элементов. Существуют звезды с повышенным содержанием того или иного элемента: кремния, железа, марганца, углерода и др. Звезды с аномальным составом довольно разнообразны. В молодых звездах типа красных гигантов присутствует повышенное количество тяжелых элементов. Так, в одной из подобных звезд содержится в 26 раз больше молибдена, чем в Солнце.

Химический состав звезды отражает влияние двух факторов: природы межзвездной среды и тех ядерных реакций, которые развиваются в звезде в течение ее жизни. Начальный состав звезды близок к составу межзвездной материи (газопылевого облака), из которой возникла звезда. А состав газопылевых облаков не одинаков, что и могло привести к отличию в составе элементов, содержащихся в звезде.

Спектральный анализ показывает, что наличие многих элементов в составе звезд может быть обусловлено только ядерными реакциями, протекающими в них (барий, цирконий, технеций). Существуют звезды, в которых водород превратился в гелий. Их атмосфера состоит из гелия. В

Химический состав некоторых звезд класса В

Относительное количество атомов в звезде

т Скорпиона

Кислород

Алюминий

таких гелиевых звездах обнаружены углерод, неон, титан, азот, кислород, кремний, магний. Известны гелиевые звезды, практически не содержащие водорода, который выгорел в результате ядерных реакций.

Очень интересными являются углеродные звезды. Это относительно холодные звезды (гиганты и сверхгиганты), их поверхностные температуры лежат в пределах 2500-6000° С. При температуре ниже 3500° С при равном количестве кислорода и углерода в атмосфере большая часть этих элементов связана в монооксид углерода СО. Из других углеродных соединений в атмосферах таких звезд присутствуют радикалы CN и СН.

Исследование распространенности элементов в космосе показало, что с увеличением атомной массы элемента уменьшается его распространенность. Кроме того, элементы с четными порядковыми номерами встречаются чаще, чем с нечетными. Распространенность элементов в космосе приведена на рис. 3.1 .

Логарифм относительного содержания (на 1012 атомов Н)

Рис. 3.1. Распространенность элементов в космосе