Оптическая и механическая система микроскопа. Микроскоп как оптическая система. Схема расположения основных элементов оптического микроскопа

  • Электрическая часть микроскопа
  • В отличие от лупы, микроскоп имеет, как минимум, две ступени увеличения. Функциональные и конструктивно-технологические части микроскопа предназначены для обеспечения работы микроскопа и получения устойчивого, максимально точного, увеличенного изображения объекта. Здесь мы рассмотрим устройство микроскопа и постараемся описать основные части микроскопа.

    Функционально устройство микроскопа делится на 3 части:

    1. Осветительная часть

    Осветительная часть конструкции микроскопа включает источник света (лампа и электрический блок питания) и оптико-механическую систему (коллектор, конденсор, полевая и апертурная регулируемые/ирисовые диафрагмы).

    2. Воспроизводящая часть

    Предназначена для воспроизведения объекта в плоскости изображения с требуемым для исследования качеством изображения и увеличения (т. е. для построения такого изображения, которое как можно точнее и во всех деталях воспроизводило бы объект с соответствующим оптике микроскопа разрешением, увеличением, контрастом и цветопередачей).
    Воспроизводящая часть обеспечивает первую ступень увеличения и расположена после объекта до плоскости изображения микроскопа.
    Воспроизводящая часть включает объектив и промежуточную оптическую систему.

    Современные микроскопы последнего поколения базируются на оптических системах объективов, скорректированных на бесконечность. Это требует дополнительно применения так называемых тубусных систем, которые параллельные пучки света, выходящие из объектива, «собирают» в плоскости изображения микроскопа.

    3. Визуализирующая часть

    Предназначена для получения реального изображения объекта на сетчатке глаза, фотоплёнке или пластинке, на экране телевизионного или компьютерного монитора с дополнительным увеличением (вторая ступень увеличения).
    Визуализирующая часть расположена между плоскостью изображения объектива и глазами наблюдателя (цифровой камерой).
    Визуализирующая часть включает монокулярную, бинокулярную или тринокулярную визуальную насадку с наблюдательной системной (окулярами, которые работают как лупа).
    Кроме того, к этой части относятся системы дополнительного увеличения (системы оптовара/смены увеличения); проекционные насадки, в том числе дискуссионные для двух и более наблюдателей; рисовальные аппараты; системы анализа и документирования изображения с соответствующими адаптерами для цифровых камер.

    Схема расположения основных элементов оптического микроскопа

    С конструктивно-технологической точки зрения, микроскоп состоит из следующих частей:

    • механической;
    • оптической;
    • электрической.

    1. Механическая часть микроскопа

    Устройство микроскопа включается в себя штатив, который является основным конструктивно-механическим блоком микроскопа. Штатив включает в себя следующие основные блоки: основание и тубусодержатель .

    Основание представляет собой блок, на котором крепится весь микроскоп и является одной из основных частей микроскопа. В простых микроскопах на основание устанавливают осветительные зеркала или накладные осветители. В более сложных моделях осветительная система встроена в основание без или с блоком питания.

    Разновидности оснований микроскопа:

    1. основание с осветительным зеркалом;
    2. так называемое «критическое» или упрощенное освещение;
    3. освещение по Келеру.
    1. узел смены объективов, имеющий следующие варианты исполнения — револьверное устройство, резьбовое устройство для ввинчивания объектива, «салазки» для безрезьбового крепления объективов с помощью специальных направляющих;
    2. фокусировочный механизм грубой и точной настройки микроскопа на резкость — механизм фокусировочного перемещения объективов или столиков;
    3. узел крепления сменных предметных столиков;
    4. узел крепления фокусировочного и центрировочного перемещения конденсора;
    5. узел крепления сменных насадок (визуальных, фотографических, телевизионных, различных передающих устройств).

    В микроскопах могут использоваться стойки для крепления узлов (например, фокусировочный механизм в стереомикроскопах или крепление осветителя в некоторых моделях инвертированных микроскопов).

    Чисто механическим узлом микроскопа является предметный столик , предназначенный для крепления или фиксации в определенном положении объекта наблюдения. Столики бывают неподвижные, координатные и вращающиеся (центрируемые и нецентрируемые).

    2. Оптика микроскопа (оптическая часть)

    Оптические узлы и принадлежности обеспечивают основную функцию микроскопа — создание увеличенного изображения объекта с достаточной степенью достоверности по форме, соотношению размеров составляющих элементов и цвету. Кроме этого, оптика должна обеспечивать такое качество изображения, которое отвечает целям исследования и требованиям методик проводимого анализа.
    Основными оптическими элементами микроскопа являются оптические элементы, образующие осветительную (в том числе, конденсор), наблюдательную (окуляры) и воспроизводящую (в том числе объективы) системы микроскопа.

    Объективы микроскопа

    — представляют собой оптические системы, предназначенные для построения микроскопического изображения в плоскости изображения с соответствующим увеличением, разрешением элементов, точностью воспроизведения по форме и цвету объекта исследования. Объективы являются одними из основных частей микроскопа. Они имеют сложную оптико-механическую конструкцию, которая включает несколько одиночных линз и компонентов, склеенных из 2-х или 3-х линз.
    Количество линз обусловлено кругом решаемых объективом задач. Чем выше качество изображения, которое дает объектив, тем сложнее его оптическая схема. Общее число линз в сложном объективе может доходить до 14 (например, это может относиться к планапохроматическому объективу с увеличением 100х и числовой апертурой 1,40).

    Объектив состоит из фронтальной и последующей частей. Фронтальная линза (или система линз) обращена к препарату и является основной при построении изображения соответствующего качества, определяет рабочее расстояние и числовую апертуру объектива. Последующая часть в сочетании с фронтальной обеспечивает требуемое увеличение, фокусное расстояние и качество изображения, а также определяет высоту объектива и длину тубуса микроскопа.

    Классификация объективов

    Классификация объективов значительно сложнее классификации микроскопов. Объективы разделяются по принципу расчетного качества изображения, параметрическим и конструктивно-технологическим признакам, а также по методам исследования и контрастирования.

    По принципу расчетного качества изображения объективы могут быть:

    • ахроматическими;
    • апохроматическими;
    • объективами плоского поля (план).

    Ахроматические объективы .

    Ахроматические объективы рассчитаны для применения в спектральном диапазоне 486-656 нм. Исправление любой аберрации (ахроматизация) выполнено для двух длин волн. В этих объективах устранены сферическая аберрация, хроматическая аберрация положения, кома, астигматизм и частично — сферохроматическая аберрация. Изображение объекта имеет несколько синевато-красноватый оттенок.

    Апохроматические объективы .

    Апохроматические объективы имеют расширенную спектральную область, и ахроматизация выполняется для трех длин волн. При этом, кроме хроматизма положения, сферической аберрации, комы и астигматизма, достаточно хорошо исправляются также вторичный спектр и сферохроматическая аберрация, благодаря введению в схему линз из кристаллов и специальных стекол. По сравнению с ахроматами, эти объективы обычно имеют повышенные числовые апертуры, дают четкое изображение и точно передают цвет объекта.

    Полуапохроматы или микрофлюары .

    Современные объективы, обладающие промежуточным качеством изображения.

    Планобъективы .

    В планобъективах исправлена кривизна изображения по полю, что обеспечивает резкое изображение объекта по всему полю наблюдения. Планобъективы обычно применяются при фотографировании, причем наиболее эффективно применение планапохроматов.

    Потребность в подобного типа объективах возрастает, однако они достаточно дороги из-за оптической схемы, реализующей плоское поле изображения, и применяемых оптических сред. Поэтому рутинные и рабочие микроскопы комплектуются так называемыми экономичными объективами. К ним относятся объективы с улучшенным качеством изображения по полю: ахростигматы (LEICA), СР-ахроматы и ахропланы (CARL ZEISS), стигмахроматы (ЛОМО).

    По параметрическим признакам объективы делятся следующим образом:

    1. объективы с конечной длиной тубуса (например, 160 мм) и объективы, скорректированные на длину тубуса «бесконечность» (например, с дополнительной тубусной системой, имеющей фокусное расстояние микроскопа 160 мм);
    2. объективы малых (до 10х); средних (до 50х) и больших (более 50х) увеличений, а также объективы со сверхбольшим увеличением (свыше 100х);
    3. объективы малых (до 0,25), средних (до 0,65) и больших (более 0,65) числовых апертур, а также объективы с увеличенными (по сравнению с обычными) числовыми апертурами (например, объективы апохроматической коррекции, а также специальные объективы для люминесцентных микроскопов);
    4. объективы с увеличенными (по сравнению с обычными) рабочими расстояниями, а также с большими и сверхбольшими рабочими расстояниями (объективы для работы в инвертированных микроскопах). Рабочее расстояние — это свободное расстояние между объектом (плоскостью покровного стекла) и нижним краем оправы (линзы, если она выступает) фронтального компонента объектива;
    5. объективы, обеспечивающие наблюдение в пределах нормального линейного поля (до 18 мм); широкопольные объективы (до 22,5 мм); сверхширокопольные объективы (более 22,5 мм);
    6. объективы стандартные (45 мм, 33 мм) и нестандартные по высоте.

    Высота — расстояние от опорной плоскости объектива (плоскости соприкосновения ввинченного объектива с револьверным устройством) до плоскости предмета при сфокусированном микроскопе, является постоянной величиной и обеспечивает парфокальность комплекта аналогичных по высоте объективов разного увеличения, установленных в револьверном устройстве. Иными словами, если с помощью объектива одного увеличения получить резкое изображение объекта, то при переходе к последующим увеличениям изображение объекта остается резким в пределах глубины резкости объектива.

    По конструктивно-технологическим признакам существует следующее разделение:

    1. объективы, имеющие пружинящую оправу (начиная с числовой апертуры 0,50), и без нее;
    2. объективы, имеющие ирисовую диафрагму внутри для изменения числовой апертуры (например, в объективах с увеличенной числовой апертурой, в объективах проходящего света для реализации метода темного поля, в поляризационных объективах отраженного света);
    3. объективы с корректирующей (управляющей) оправой, которая обеспечивает движение оптических элементов внутри объектива (например, для корректировки качества изображения объектива при работе с различной толщиной покровного стекла или с различными иммерсионными жидкостями; а также для изменения увеличения при плавной — панкратической — смене увеличения) и без нее.

    По обеспечению методов исследования и контрастирования объективы можно разделить следующим образом:

    1. объективы, работающие с покровным и без покровного стекла;
    2. объективы проходящего и отраженного света (безрефлексные); люминесцентные объективы (с минимумом собственной люминесценции); поляризационные объективы (без натяжения стекла в оптических элементах, т. е. не вносящие собственную деполяризацию); фазовые объективы (имеющие фазовый элемент — полупрозрачное кольцо внутри объектива); объективы ДИК (DIC), работающие по методу дифференциально-интерференционного контраста (поляризационные с призменным элементом); эпиобъективы (объективы отраженного света, предназначенные для обеспечения методов светлого и темного поля, имеют в конструкции специально рассчитанные осветительные эпи-зеркала);
    3. иммерсионные и безыммерсионные объективы.

    Иммерсия (от лат. immersio — погружение ) — жидкость, заполняющая пространство между объектом наблюдения и специальным иммерсионным объективом (конденсором и предметным стеклом). В основном применяются три типа иммерсионных жидкостей: масляная иммерсия (МИ/Oil), водная иммерсия (ВИ/W) и глицериновая иммерсия (ГИ/Glyc), причем последняя в основном применяется в ультрафиолетовой микроскопии.
    Иммерсия применяется в тех случаях, когда требуется повысить разрешающую способность микроскопа или её применения требует технологический процесс микроскопирования. При этом происходит:

    1. повышение видимости за счет увеличения разности показателя преломления среды и объекта;
    2. увеличение глубины просматриваемого слоя, который зависит от показателя преломления среды.

    Кроме того, иммерсионная жидкость может уменьшать количество рассеянного света за счет исчезновения бликов от объекта. При этом устраняются неизбежные потери света при его попадании в объектив.

    Иммерсионные объективы. Качество изображения, параметры и оптическая конструкция иммерсионных объективов рассчитываются и выбираются с учетом толщины слоя иммерсии, которая рассматривается как дополнительная линза с соответствующим показателем преломления. Иммерсионная жидкость, расположенная между объектом и фронтальным компонентом объектива, увеличивает угол, под которым рассматривается объект (апертурный угол). Числовая апертура безыммерсионного (сухого) объектива не превышает 1,0 (разрешающая способность порядка 0,3 мкм для основной длины волны); иммерсионного — доходит до 1,40 в зависимости от показателя преломления иммерсии и технологических возможностей изготовления фронтальной линзы (разрешающая способность такого объектива порядка 0,12 мкм).
    Иммерсионные объективы больших увеличений имеют короткое фокусное расстояние — 1,5-2,5 мм при свободном рабочем расстоянии 0,1-0,3 мм (расстояние от плоскости препарата до оправы фронтальной линзы объектива).

    Маркировка объективов.

    Данные о каждом объективе маркируются на его корпусе с указанием следующих параметров:

    1. увеличение («х»-крат, раз): 8х, 40х, 90х;
    2. числовая апертура: 0,20; 0,65, пример: 40/0,65 или 40х/0,65;
    3. дополнительная буквенная маркировка, если объектив используется при различных методах исследования и контрастирования: фазовый — Ф (Рп2 — цифра соответствует маркировке на специальном конденсоре или вкладыше), поляризационный — П (Pol), люминесцентный — Л (L), фазово-люминесцентный — ФЛ (PhL), ЭПИ (Epi, HD) — эпиобъектив для работы в отраженном свете по методу темного поля, дифференциально-интерференционный контраст — ДИК (DIC), пример: 40х/0,65 Ф или Ph2 40x/0,65;
    4. маркировка типа оптической коррекции: апохромат — АПО (АРО), планахромат — ПЛАН (PL, Plan), планапохромат — ПЛАН-АПО (Plan-Аро), улучшенный ахромат, полуплан — СХ — стигмахромат (Achrostigmat, CP-achromat, Achroplan), микрофлюар (полуплан-полуапохромат) — СФ или М-ФЛЮАР (MICROFLUAR, NEOFLUAR, NPL, FLUOTAR).

    Окуляры

    Оптические системы, предназначенные для построения микроскопического изображения на сетчатке глаза наблюдателя. В общем виде окуляры состоят из двух групп линз: глазной — ближайшей к глазу наблюдателя — и полевой — ближайшей к плоскости, в которой объектив строит изображение рассматриваемого объекта.

    Окуляры классифицируются по тем же группам признаков, что и объективы:

    1. окуляры компенсационного (К — компенсируют хроматическую разность увеличения объективов свыше 0,8%) и безкомпенсационного действия;
    2. окуляры обычные и плоского поля;
    3. окуляры широкоугольные (с окулярным числом — произведение увеличения окуляра на его линейное поле — более 180); сверхширокоугольные (с окулярным числом более 225);
    4. окуляры с вынесенным зрачком для работы в очках и без;
    5. окуляры для наблюдения, проекционные, фотоокуляры, гамалы;
    6. окуляры с внутренней наводкой (с помощью подвижного элемента внутри окуляра происходит настройка на резкое изображение сетки или плоскость изображения микроскопа; а также плавное, панкратическое изменение увеличения окуляра) и без нее.

    Осветительная система

    Осветительная система является важной частью конструкции микроскопа и представляет собой систему линз, диафрагм и зеркал (последние применяются при необходимости), обеспечивающую равномерное освещение объекта и полное заполнение апертуры объектива.
    Осветительная система микроскопа проходящего света состоит из двух частей — коллектора и конденсора.

    Коллектор.
    При встроенной осветительной системе проходящего света коллекторная часть расположена вблизи источника света в основании микроскопа и предназначена для увеличения размера светящегося тела. Для обеспечения настройки коллектор может быть выполнен подвижным и перемещаться вдоль оптической оси. Вблизи коллектора располагается полевая диафрагма микроскопа.

    Конденсор.
    Оптическая система конденсора предназначена для увеличения количества света, поступающего в микроскоп. Конденсор располагается между объектом (предметным столиком) и осветителем (источником света).
    Чаще всего в учебных и простых микроскопах конденсор может быть выполнен несъемным и неподвижным. В остальных случаях конденсор является съемной частью и при настройке освещения имеет фокусировочное перемещение вдоль оптической оси и центрировочное перемещение, перпендикулярное оптической оси.
    При конденсоре всегда находится осветительная апертурная ирисовая диафрагма.

    Конденсор является одним из основных элементов, обеспечивающих работу микроскопа по различным методам освещения и контрастирования:

    • косое освещение (диафрагмирование от края к центру и смещение осветительной апертурной диафрагмы относительно оптической оси микроскопа);
    • темное поле (максимальное диафрагмирование от центра к краю осветительной апертуры);
    • фазовый контраст (кольцевое освещение объекта, при этом изображение светового кольца вписывается в фазовое кольцо объектива).

    Классификация конденсоров близка по группам признаков к объективам:

    1. конденсоры по качеству изображения и типу оптической коррекции делятся на неахроматические, ахроматические, апланатические и ахроматические-апланатические;
    2. конденсоры малой числовой апертуры (до 0,30), средней числовой апертуры (до 0,75), большой числовой апертуры (свыше 0,75);
    3. конденсоры с обычным, большим и сверхбольшим рабочим расстоянием;
    4. обычные и специальные конденсоры для различных методов исследования и контрастирования;
    5. конструкция конденсора — единая, с откидным элементом (фронтальным компонентом или линзой большого поля), со свинчивающимся фронтальным элементом.

    Конденсор Аббе — не исправленный по качеству изображения конденсор, состоящий из 2-х неахроматических линз: одной — двояковыпуклой, другой — плосковыпуклой, обращенной к объекту наблюдения (плоская сторона этой линзы направлена вверх). Апертура конденсора, А= 1,20. Имеет ирисовую диафрагму.

    Апланатический конденсор — конденсор, состоящий из трех линз, расположенных следующим образом: верхняя линза — плосковыпуклая (плоская сторона направлена к объективу), далее следуют вогнуто-выпуклая и двояковыпуклая линзы. Исправлен в отношении сферической аберрации и комы. Апертура конденсора, А = 1.40. Имеет ирисовую диафрагму.

    Ахроматический конденсор — конденсор, полностью исправленный в отношении хроматической и сферической аберрации.

    Конденсор темного поля — конденсор, предназначенный для получения эффекта темного поля. Может быть специальным или переделан из обычного светлопольного конденсора путем установки в плоскости ирисовой диафрагмы конденсора непрозрачного диска определенного размера.

    Маркировка конденсора.
    На фронтальной части конденсора наносится маркировка числовой апертуры (осветительной).

    3. Электрическая часть микроскопа

    В современных микроскопах, вместо зеркал, используются различные источники освещения, питаемые от электрической сети. Это могут быть как обычные лампы накаливания, так и галогенные, и ксеноновые, и ртутные лампы. Также все большую популярность набирают светодиодные осветители. Они обладают значительными преимуществами перед обычными лампами, как например долговечность, меньшее энергопотребление и др. Для питания источника освещения используются различные блоки питания, блоки розжига и другие устройства, преобразующие ток из электрической сети в подходящий для питания того или иного источника освещения. Также это могут быть и аккумуляторные батареи, что позволяет использовать микроскопы в полевых условиях при отсутствии точки подключения.

    Предназначены для формирования увеличенных двухмерных изображений, снятых в последовательно расположенных вдоль оптической оси фокальных плоскостях образца, что обеспечивает возможность двух- и трёхмерного исследования мелких структурных деталей образца. Оптические компоненты смонтированы на прочном эргономичном основании, что обеспечивает возможность быстрой замены, точного центрирования и тщательной юстировки оптически взаимосвязанных узлов. Вместе, оптические и механические компоненты микроскопа, включая образец, помещённый между предметным и покровным стеклом, образуют оптическую систему, центральная ось которой проходит через основание и штатив микроскопа.

    Оптическая система микроскопа обычно состоит из осветителя (включая источник света и собирающую линзу), конденсора, образца, объектива, окуляра и фотоприёмника, который может являться либо камерой , либо глазом наблюдателя. Исследовательские микроскопы также содержат устройство (предварительной) обработки светового пучка, обычно расположенное между осветителем и конденсором, и дополнительный фотоприёмник или светофильтры, вставленные между объективом и окуляром или камерой. Согласованная работа фотоприёмника и устройств(а) предварительной обработки пучка обеспечивает изменение контрастности изображения как функции пространственной частоты, фазы, поляризации, поглощения, флуоресценции, внеосевого освещения и/или других свойств образца и параметров режима освещения. Но даже без дополнительных устройств обработки осветительного пучка и фильтрации волн, формирующих изображение, большинство даже базовых микроскопических конфигураций обладают определённой степенью естественной фильтрации.

    Введение

    Современные сложные микроскопы предназначены для формирования увеличенных двухмерных изображений снятых в последовательно расположенных вдоль оптической оси фокальных плоскостях образца что обеспечивает возможность двух и трёхмерного исследования мелких структурных деталей образца.

    Большинство микроскопов оснащено механизмом перемещения предметного столика, позволяющим микроскописту точно располагать, ориентировать и фокусировать образец для оптимизации наблюдения и формирования изображений. Интенсивность освещения и ход лучей в микроскопе контролируются и управляются посредством размещения диафрагм, зеркал, призм, светоделителей и других оптических элементов в определенные положения, за счет чего достигается необходимая яркость и контрастность образца.

    На рисунке 1 представлен микроскоп Nikon Eclipse E600, с тринокулярным тубусом и цифровой камерой DXM-1200 для регистрации изображений. Освещение производится расположенной в ламповом блоке галогенной лампой с вольфрамовой нитью, свет от которой сначала проходит через собирающую линзу, а потом попадает в оптический путь в основании микроскопа. Испущенный лампой накаливания пучок света модифицируется серией фильтров, расположенных также в основании микроскопа, после чего, отражённый от зеркала, он через полевую диафрагму падает на конденсор. Световой конус, формируемый конденсором, освещает образец, расположенный на предметном столике микроскопа, и попадает в объектив. После объектива световой пучок расщепляется светоделителем/блоком призм и направляется либо в окуляр, где формируется мнимое изображение, либо на проекционную линзу тринокулярного промежуточного тубуса для формирования цифрового изображения на фотодиодной матрице ПЗС цифровой системы регистрации и визуализации изображений.

    Оптические компоненты современных микроскопов смонтированы на прочном эргономичном основании, что обеспечивает возможность быстрой замены, точного центрирования и тщательной юстировки оптически взаимосвязанных узлов. Вместе, оптические и механические компоненты микроскопа, включая образец, помещённый между предметным и покровным стеклом, образуют оптическую систему, центральная ось которой проходит через основание и штатив микроскопа.

    Оптическая система микроскопа обычно состоит из осветителя (включая источник света и собирающую линзу), конденсора, образца, объектива, окуляра и фотоприёмника, который может являться либо камерой, либо глазом наблюдателя (таблица 1).
    Исследовательские микроскопы также содержат устройство предварительной обработки светового пучка, обычно расположенное между осветителем и конденсором, и дополнительный фотоприёмник или светофильтры, размещаемые между объективом и окуляром или камерой. Согласованная работа фотоприёмника и устройств(а) предварительной обработки пучка обеспечивает изменение контрастности изображения как функции пространственной частоты, фазы, поляризации, поглощения, флуоресценции, внеосевого освещения и/или других свойств образца и параметров режима освещения. Но даже без дополнительных устройств обработки осветительного пучка и фильтрации волн, формирующих изображение, большинство базовых микроскопических конфигураций обладают определённой степенью естественной фильтрации.

    Таблица 1. Компоненты оптической системы микроскопа.
    Компонент микроскопа Элементы и характеристики
    Осветитель Источник света, собирающая линза, полевая диафрагма, тепловые фильтры, выравнивающие светофильтры, рассеиватель, нейтральные светофильтры
    Устройство предварительной обработки пучка Ирисовая диафрагма конденсора, темнопольная диафрагма, теневая маска, фазовые кольца, внеосевая щелевая диафрагма, призма Номарского, флуоресцентный фильтр возбуждения
    Конденсор Числовая апертура, фокусное расстояние, аберрации, пропускание света, иммерсионная среда, рабочее расстояние
    Образец Толщина предметного стекла, толщина покровного стекла, иммерсионная среда, поглощение, пропускание, дифракция, флуоресценция, запаздывание, двойное лучепреломление
    Объектив Увеличение, числовая апертура, фокусное расстояние, иммерсионная среда, аберрации, пропускание света, оптическая передаточная функция, рабочее расстояние
    Фильтр изображения Компенсатор, анализатор, призма Номарского, ирисовая диафрагма объектива, фазовая пластина, SSEE фильтр, модуляционная пластина, пропускание света, селекция длин волн, флуоресцентный запирающий фильтр
    Окуляр Увеличение, аберрации, размер поля, вынос глаза
    Детектор Человеческий глаз, фотоэмульсия, фотоумножитель, фотодиодная матрица, видеокамера

    В то время как одни оптические компоненты микроскопа выступают в роли элементов, формирующих изображение, другие предназначены для различных модификаций освещающего пучка, а также выполняют фильтрующие и передающие функции. Формирующими изображение компонентами оптической системы микроскопа являются собирающая линза (расположенная в осветителе или рядом с ним), конденсор, объектив, окулярный тубус (или окуляр) и преломляющие элементы человеческого глаза или линза камеры. Хотя некоторые из этих компонентов обычно не относятся к формирующим изображение, их характеристики имеют первостепенное значение в определении качества конечного микроскопического изображения.

    Ход световых волн через идеальную линзу

    Понимание роли отдельных линз, составляющих компоненты оптической системы, является основополагающим для понимания процесса формирования изображения в микроскопе. Простейшим, формирующим изображение элементом является идеальная линза (рисунок 2) – идеально скорректированная, свободная от аберраций и собирающая свет в одну точку. Параллельный, параксиальный пучок света, преломляясь в собирающей линзе, фоку сируется в её фокальной точке или фокусе (на рисунке 2 она обозначена надписью Фокус ).Такие линзы часто называют положительными , поскольку они способствуют более быстрому схождению конвергентного (сходящегося) светового пучка и замедляют расхождение расходящегося пучка. Свет от точечного источника, расположенного в фокальной точке линзы, выходит из неё параллельным, параксиальным пучком (направление справа налево на рисунке 2). Расстояние между линзой и её фокус ом называется фокусным расстоянием линзы (обозначенной буквой f на рисунке 2).

    Оптические явления часто описываются в терминах либо квантовой теории, либо волновой оптики, в зависимости от рассматриваемой задачи. При прохождении света через линзу, его волновыми свойствами можно пренебречь и считать, что он распространяется по прямым линиям, обычно называемым лучами. Простых лучевых диаграмм или хода лучей часто бывает достаточно для объяснения многих важных аспектов и понятий микроскопии, включая преломление, фокусное расстояние, увеличение, формирование изображения и диафрагмы. В других случаях, световые волны удобнее рассматривать как состоящие из отдельных частиц (квантов), особенно когда свет создается в результате квантово-механического события или трансформируется в другой вид энергии. В нашем обсуждении проходящие через оптические линзы параксиальные лучи будут рассматриваться в рамках как волновой, так и геометрической (лучевой) оптики (лучевых диаграмм, в которых лучи распространяются слева направо). Параксиальными (или приосевыми) называются световые лучи, проходящие близко к оптической оси; при этом значения углов падения и преломления, выраженные в радианах, можно считать приблизительно равными значениям их синусов.

    В параллельном световом пучке отдельные монохроматические волны образуют группу волн , электрические и магнитные векторы в которой колеблются в фазе и образуют волновой фронт ; при этом направление его распространения перпендикулярно направлению колебаний. При прохождении через идеальную линзу плоская волна преобразуется в сферическую, с центром в фокальной точке (Фокусе ) линзы (рисунок 2). Сведённые в фокальной точке световые волны интерферируют, усиливая друг друга. И наоборот, сферический волновой фронт, расходящийся из фокальной точки идеальной линзы, преобразуется ей в плоскую волну (распространение справа налево на рисунке 2). Каждый световой луч плоской волны преломляется в линзе с небольшим отличием от других, поскольку падает на её поверхность под несколько отличным углом. На выходе из линзы направление светового луча также меняется. В реальных системах угол преломления и фокальная точка линзы или группы линз зависит от толщины, геометрии, показателя преломления и дисперсии каждого компонента системы.

    Микроскоп как оптическая система

    Немного о биологических микроскопах

    Биологические микроскопы - это, пожалуй, самый распространенный тип оптических приборов для изучения микромира. Благодаря своей универсальности и простоте использования, этот тип микроскопов нашел широкое применение в ботанике, гистологии , цитологии , микробиологии и медицине. Достаточно активно используют биологические микроскопы и в отраслях, особо не связанных с биологией: с их помощью проводят изучение прозрачных и полупрозрачных объектов в химии, физике, а также во многих других сферах деятельности человека, где требуется проведение исследований при большом увеличении.
    Современные производители предлагают широкий ассортимент моделей биологических микроскопов, в конструкции которых используются разнообразные дополнительные принадлежности, значительно расширяющие их функциональные возможности:

      различные виды источников освещения; конденсоры, работающие по принципам светлого и темного полей; наборы для исследований по методам фазового-контраста и поляризации; микрометры для проведения измерений с помощью окуляров со шкалой, или с помощью специального программного обеспечения ; адаптеры для подключения цифровых камер и фотоаппаратов; различные светофильтры для улучшения контраста видимого изображения объекта исследования.

    Биологические микроскопы или иначе их называют лабораторные микроскопы, использующиеся в исследовательской деятельности, оснащаются наборами объективов, различающихся разно степенью ахроматической коррекции (ахроматы, планахроматы, апохроматы и т. п.). К каждому набору объективов прилагается свой комплект окуляров, с помощью которых изображение формируемое объективами преобразуется в понятный для восприятия глазами свет. С помощью специальной тринокулярной насадки можно проводить как визуальное наблюдение, так и выводить его на монитор персонального компьютера, а также фотографировать полученное изображение.
    Изображения, поступающие с цифровых лабораторных микроскопов, а также с лабораторных микроскопов с тринокулярной насадкой, отличаются яркостью и четкостью, качественной цветопередачей.
    Лабораторные микроскопы интересны чаще всего людям, занимающимся научными исследованиями, но также могут быть используемы для учебных целей в школах и институтах.

    Основные части микроскопа. Устройство оптических микроскопов

    Видео :

    Микроскоп. Microscope 1

    http://youtu. be/2CjnKhXu4ig

    http://youtu. be/Aci8yAYrq0U

    В отличие от лупы, микроскоп имеет, как минимум, две ступени увеличения. Функциональные и конструктивно-технологические части микроскопа предназначены для обеспечения работы микроскопа и получения устойчивого, максимально точного, увеличенного изображения объекта. Здесь мы рассмотрим устройство микроскопа и постараемся описать основные части микроскопа.

    Устройство микроскопа делится на 3 функциональные части:

    1. Осветительная часть
    Предназначена для создания светового потока, который позволяет осветить объект таким образом, чтобы последующие части микроскопа предельно точно выполняли свои функции. Осветительная часть микроскопа проходящего света расположена за объектом под объективом в прямых микроскопах (например, биологические, поляризационные и др.) и перед объектом над объективом в инвертированных.

    Осветительная часть конструкции микроскопа включает (лампа и электрический блок питания) и оптико-механическую систему (коллектор , конденсор, полевая и апертурная регулируемые/ирисовые диафрагмы).

    2. Воспроизводящая часть
    Предназначена для воспроизведения объекта в плоскости изображения с требуемым для исследования качеством изображения и увеличения (т. е. для построения такого изображения, которое как можно точнее и во всех деталях воспроизводило бы объект с соответствующим оптике микроскопа разрешением, увеличением, контрастом и цветопередачей).
    Воспроизводящая часть обеспечивает первую ступень увеличения и расположена после объекта до плоскости изображения микроскопа.
    Воспроизводящая часть включает объектив и промежуточную оптическую систему.

    Современные микроскопы последнего поколения базируются на оптических системах объективов, скорректированных на бесконечность. Это требует дополнительно применения так называемых тубусных систем, которые параллельные пучки света, выходящие из объектива, «собирают» в плоскости изображения микроскопа.

    3. Визуализирующая часть
    Предназначена для получения реального изображения объекта на сетчатке глаза, фотоплёнке или пластинке, на экране телевизионного или компьютерного монитора с дополнительным увеличением (вторая ступень увеличения).
    Визуализирующая часть расположена между плоскостью изображения объектива и глазами наблюдателя (цифровой камерой).

    Визуализирующая часть включает монокулярную, бинокулярную или тринокулярную визуальную насадку с наблюдательной системной (окулярами, которые работают как лупа).

    Кроме того, к этой части относятся системы дополнительного увеличения (системы оптовара/смены увеличения); проекционные насадки, в том числе дискуссионные для двух и более наблюдателей; рисовальные аппараты; системы анализа и документирования изображения с соответствующими адаптерами для цифровых камер.

    Современный микроскоп состоит из следующих конструктивно-технологических частей:

      оптической; механической; электрической.

    Механическая часть микроскопа

    Устройство микроскопа включается себя штатив, который является основным конструктивно-механическим блоком микроскопа. Штатив включает в себя следующие основные блоки: основание и тубусодержатель.

    Основание представляет собой блок, на котором крепится весь микроскоп и является одной из основных частей микроскопа. В простых микроскопах на основание устанавливают осветительные зеркала или накладные осветители. В более сложных моделях осветительная система встроена в основание без или с блоком питания.

    Разновидности оснований микроскопа:

    1. основание с осветительным зеркалом;

    2. так называемое «критическое» или упрощенное освещение;

    3. освещение по Келеру.

    1. узел смены объективов, имеющий следующие варианты исполнения - револьверное устройство, резьбовое устройство для ввинчивания объектива, «салазки» для безрезьбового крепления объективов с помощью специальных направляющих;

    2. фокусировочный механизм грубой и точной настройки микроскопа на резкость - механизм фокусировочного перемещения объективов или столиков;

    3. узел крепления сменных предметных столиков;

    4. узел крепления фокусировочного и центрировочного перемещения конденсора;

    5. узел крепления сменных насадок (визуальных, фотографических, телевизионных, различных передающих устройств).

    В микроскопах могут использоваться стойки для крепления узлов (например, фокусировочный механизм в стереомикроскопах или крепление осветителя в некоторых моделях инвертированных микроскопов).

    Чисто механическим узлом микроскопа является предметный столик, предназначенный для крепления или фиксации в определенном положении объекта наблюдения. Столики бывают неподвижные, координатные и вращающиеся (центрируемые и нецентрируемые).

    Оптика микроскопа (оптическая часть)

    Оптические узлы и принадлежности обеспечивают основную функцию микроскопа - создание увеличенного изображения объекта с достаточной степенью достоверности по форме, соотношению размеров составляющих элементов и цвету. Кроме этого, оптика должна обеспечивать такое качество изображения, которое отвечает целям исследования и требованиям методик проводимого анализа.
    Основными оптическими элементами микроскопа являются оптические элементы, образующие осветительную (в том числе, конденсор), наблюдательную (окуляры) и воспроизводящую (в том числе объективы) системы микроскопа.

    Объективы микроскопа

    Представляют собой оптические системы, предназначенные для построения микроскопического изображения в плоскости изображения с соответствующим увеличением, разрешением элементов, точностью воспроизведения по форме и цвету объекта исследования. Объективы являются одними из основных частей микроска. Они имеют сложную оптико-механическую конструкцию, которая включает несколько одиночных линз и компонентов, склеенных из 2-х или 3-х линз.
    Количество линз обусловлено кругом решаемых объективом задач. Чем выше качество изображения, даваемое объективом, тем сложнее его оптическая схема. Общее число линз в сложном объективе может доходить до 14 (например, это может относиться к планапохроматическому объективу с увеличением 100х и числовой апертурой 1,40).

    Объектив состоит из фронтальной и последующей частей. Фронтальная линза (или система линз) обращена к препарату и является основной при построении изображения соответствующего качества, определяет рабочее расстояние и числовую апертуру объектива. Последующая часть в сочетании с фронтальной обеспечивает требуемое увеличение, фокусное расстояние и качество изображения, а также определяет высоту объектива и длину тубуса микроскопа.

    Классификация объективов

    Классификация объективов значительно сложнее классификации микроскопов. Объективы разделяются по принципу расчетного качества изображения, параметрическим и конструктивно-технологическим признакам, а также по методам исследования и контрастирования.

    По принципу расчетного качества изображения объективы могут быть:

      ахроматическими; апохроматическими; объективами плоского поля (план).

    Ахроматические объективы.

    Ахроматические объективы рассчитаны для применения в спектральном диапазоне 486–656 нм. Исправление любой аберрации (ахроматизация) выполнено для двух длин волн. В этих объективах устранены сферическая аберрация, хроматическая аберрация положения, кома, астигматизм и частично - сферохроматическая аберрация. Изображение объекта имеет несколько синевато-красноватый оттенок.

    Апохроматические объективы.

    Апохроматические объективы имеют расширенную спектральную область, и ахроматизация выполняется для трех длин волн. При этом, кроме хроматизма положения, сферической аберрации, комы и астигматизма, достаточно хорошо исправляются также вторичный спектр и сферохроматическая аберрация, благодаря введению в схему линз из кристаллов и специальных стекол. По сравнению с ахроматами, эти объективы обычно имеют повышенные числовые апертуры, дают четкое изображение и точно передают цвет объекта.

    Полуапохроматы или микрофлюары.

    Современные объективы, обладающие промежуточным качеством изображения.

    Планобъективы.

    В планобъективах исправлена кривизна изображения по полю, что обеспечивает резкое изображение объекта по всему полю наблюдения. Планобъективы обычно применяются при фотографировании, причем наиболее эффективно применение планапохроматов.

    Потребность в подобного типа объективах возрастает, однако они достаточно дороги из-за оптической схемы, реализующей плоское поле изображения, и применяемых оптических сред. Поэтому рутинные и рабочие микроскопы комплектуются так называемыми экономичными объективами. К ним относятся объективы с улучшенным качеством изображения по полю: ахростигматы (LEICA), СР-ахроматы и ахропланы (CARL ZEISS), стигмахроматы (ЛОМО).

    По параметрическим признакам объективы делятся следующим образом:

    1. объективы с конечной длиной тубуса (например, 160 мм) и объективы, скорректированные на длину тубуса «бесконечность» (например, с дополнительной тубусной системой, имеющей фокусное расстояние 160 мм);

    2. объективы малых (до 10х); средних (до 50х) и больших (более 50х) увеличений, а также объективы со сверхбольшим увеличением (свыше 100х);

    3. объективы малых (до 0,25), средних (до 0,65) и больших (более 0,65) числовых апертур, а также объективы с увеличенными (по сравнению с обычными) числовыми апертурами (например, объективы апохроматической коррекции, а также специальные объективы для люминесцентных микроскопов);

    4. объективы с увеличенными (по сравнению с обычными) рабочими расстояниями, а также с большими и сверхбольшими рабочими расстояниями (объективы для работы в инвертированных микроскопах). Рабочее расстояние - это свободное расстояние между объектом (плоскостью покровного стекла) и нижним краем оправы (линзы, если она выступает) фронтального компонента объектива;

    5. объективы, обеспечивающие наблюдение в пределах нормального линейного поля (до 18 мм); широкопольные объективы (до 22,5 мм); сверхширокопольные объективы (более 22,5 мм);

    6. объективы стандартные (45 мм, 33 мм) и нестандартные по высоте.

    Высота - расстояние от опорной плоскости объектива (плоскости соприкосновения ввинченного объектива с револьверным устройством) до плоскости предмета при сфокусированном микроскопе, является постоянной величиной и обеспечивает парфокальность комплекта аналогичных по высоте объективов разного увеличения, установленных в револьверном устройстве. Иными словами, если с помощью объектива одного увеличения получить резкое изображение объекта, то при переходе к последующим увеличениям изображение объекта остается резким в пределах глубины резкости объектива.

    По конструктивно-технологическим признакам существует следующее разделение:

    1. объективы, имеющие пружинящую оправу (начиная с числовой апертуры 0,50), и без нее;

    2. объективы, имеющие ирисовую диафрагму внутри для изменения числовой апертуры (например, в объективах с увеличенной числовой апертурой, в объективах проходящего света для реализации метода темного поля, в поляризационных объективах отраженного света);

    3. объективы с корректирующей (управляющей) оправой, которая обеспечивает движение оптических элементов внутри объектива (например, для корректировки качества изображения объектива при работе с различной толщиной покровного стекла или с различными иммерсионными жидкостями; а также для изменения увеличения при плавной - панкратической - смене увеличения) и без нее.

    По обеспечению методов исследования и контрастирования объективы можно разделить следующим образом:

    1. объективы, работающие с покровным и без покровного стекла;

    2. объективы проходящего и отраженного света (безрефлексные); люминесцентные объективы (с минимумом собственной люминесценции); поляризационные объективы (без натяжения стекла в оптических элементах, т. е. не вносящие собственную деполяризацию); фазовые объективы (имеющие фазовый элемент - полупрозрачное кольцо внутри объектива); объективы ДИК (DIC), работающие по методу дифференциально-интерференционного контраста (поляризационные с призменным элементом); эпиобъективы (объективы отраженного света, предназначенные для обеспечения методов светлого и темного поля, имеют в конструкции специально рассчитанные осветительные эпи-зеркала);

    3. иммерсионные и безыммерсионные объективы.

    Иммерсия (от лат. immersio - погружение) - жидкость, заполняющая пространство между объектом наблюдения и специальным иммерсионным объективом (конденсором и предметным стеклом). В основном применяются три типа иммерсионных жидкостей: масляная иммерсия (МИ/Oil), водная иммерсия (ВИ/W) и глицериновая иммерсия (ГИ/Glyc), причем последняя в основном применяется в ультрафиолетовой микроскопии.
    Иммерсия применяется в тех случаях, когда требуется повысить разрешающую способность микроскопа или её применения требует технологический процесс микроскопирования. При этом происходит:

    1. повышение видимости за счет увеличения разности показателя преломления среды и объекта;

    2. увеличение глубины просматриваемого слоя, который зависит от показателя преломления среды.

    Кроме того, иммерсионная жидкость может уменьшать количество рассеянного света за счет исчезновения бликов от объекта. При этом устраняются неизбежные потери света при его попадании в объектив.

    Иммерсионные объективы. Качество изображения, параметры и оптическая конструкция иммерсионных объективов рассчитываются и выбираются с учетом толщины слоя иммерсии, которая рассматривается как дополнительная линза с соответствующим показателем преломления. Иммерсионная жидкость, расположенная между объектом и фронтальным компонентом объектива, увеличивает угол, под которым рассматривается объект (апертурный угол). Числовая апертура безыммерсионного (сухого) объектива не превышает 1,0 (разрешающая способность порядка 0,3 мкм для основной длины волны); иммерсионного - доходит до 1,40 в зависимости от показателя преломления иммерсии и технологических возможностей изготовления фронтальной линзы (разрешающая способность такого объектива порядка 0,12 мкм).
    Иммерсионные объективы больших увеличений имеют короткое фокусное расстояние - 1,5–2,5 мм при свободном рабочем расстоянии 0,1–0,3 мм (расстояние от плоскости препарата до оправы фронтальной линзы объектива).

    Маркировка объективов.

    Данные о каждом объективе маркируются на его корпусе с указанием следующих параметров:

    1. увеличение («х»-крат, раз): 8х, 40х, 90х;

    2. числовая апертура: 0,20; 0,65, пример: 40/0,65 или 40х/0,65;

    3. дополнительная буквенная маркировка, если объектив используется при различных методах исследования и контрастирования: фазовый - Ф (Рп2 - цифра соответствует маркировке на специальном конденсоре или вкладыше), поляризационный - П (Pol), люминесцентный - Л (L), фазово-люминесцентный - ФЛ (PhL), ЭПИ (Epi, HD) - эпиобъектив для работы в отраженном свете по методу темного поля, дифференциально-интерференционный контраст - ДИК (DIC), пример: 40х/0,65 Ф или Ph2 40x/0,65;

    4. маркировка типа оптической коррекции: апохромат - АПО (АРО), планахромат - План (PL, Plan), планапохромат - ПЛАН-АПО (Plan-Аро), улучшенный ахромат, полуплан - СХ - стигмахромат (Achrostigmat, CP-achromat, Achroplan), микрофлюар (полуплан-полуапохромат) - СФ или М-ФЛЮАР (MICROFLUAR, NEOFLUAR, NPL, FLUOTAR).

    Оптические системы, предназначенные для построения микроскопического изображения на сетчатке глаза наблюдателя. В общем виде окуляры состоят из двух групп линз: глазной - ближайшей к глазу наблюдателя - и полевой - ближайшей к плоскости, в которой объектив строит изображение рассматриваемого объекта.

    Окуляры классифицируются по тем же группам признаков, что и объективы:

    1. окуляры компенсационного (К - компенсируют хроматическую разность увеличения объективов свыше 0,8%) и безкомпенсационного действия;

    2. окуляры обычные и плоского поля;

    3. окуляры широкоугольные (с окулярным числом - произведение увеличения окуляра на его линейное поле - более 180); сверхширокоугольные (с окулярным числом более 225);

    4. окуляры с вынесенным зрачком для работы в очках и без;

    5. окуляры для наблюдения, проекционные, фотоокуляры, гамалы;

    6. окуляры с внутренней наводкой (с помощью подвижного элемента внутри окуляра происходит настройка на резкое изображение сетки или плоскость изображения микроскопа; а также плавное, панкратическое изменение увеличения окуляра) и без нее.

    Осветительная система

    Осветительная система является важной частью конструкции микроскопа и представляет собой систему линз, диафрагм и зеркал (последние применяются при необходимости), обеспечивающую равномерное освещение объекта и полное заполнение апертуры объектива.
    Осветительная система микроскопа проходящего света состоит из двух частей - коллектора и конденсора.

    Коллектор.
    При встроенной осветительной системе проходящего света коллекторная часть расположена вблизи источника света в основании микроскопа и предназначена для увеличения размера светящегося тела. Для обеспечения настройки коллектор может быть выполнен подвижным и перемещаться вдоль оптической оси. Вблизи коллектора располагается полевая диафрагма микроскопа.

    Конденсор.
    Оптическая система конденсора предназначена для увеличения количества света, поступающего в микроскоп. Конденсор располагается между объектом (предметным столиком) и осветителем (источником света).
    Чаще всего в учебных и простых микроскопах конденсор может быть выполнен несъемным и неподвижным. В остальных случаях конденсор является съемной частью и при настройке освещения имеет фокусировочное перемещение вдоль оптической оси и центрировочное перемещение, перпендикулярное оптической оси.
    При конденсоре всегда находится осветительная апертурная ирисовая диафрагма.

    Конденсор является одним из основных элементов, обеспечивающих работу микроскопа по различным методам освещения и контрастирования:

      косое освещение (диафрагмирование от края к центру и смещение осветительной апертурной диафрагмы относительно оптической оси микроскопа); темное поле (максимальное диафрагмирование от центра к краю осветительной апертуры); фазовый контраст (кольцевое освещение объекта, при этом изображение светового кольца вписывается в фазовое кольцо объектива).

    Классификация конденсоров близка по группам признаков к объективам:

    1. конденсоры по качеству изображения и типу оптической коррекции делятся на неахроматические, ахроматические, апланатические и ахроматические-апланатические;

    2. конденсоры малой числовой апертуры (до 0,30), средней числовой апертуры (до 0,75), большой числовой апертуры (свыше 0,75);

    3. конденсоры с обычным, большим и сверхбольшим рабочим расстоянием;

    4. обычные и специальные конденсоры для различных методов исследования и контрастирования;

    5. конструкция конденсора - единая, с откидным элементом (фронтальным компонентом или линзой большого поля), со свинчивающимся фронтальным элементом.

    Конденсор Аббе - не исправленный по качеству изображения конденсор, состоящий из 2-х неахроматических линз: одной - двояковыпуклой, другой - плосковыпуклой, обращенной к объекту наблюдения (плоская сторона этой линзы направлена вверх). Апертура конденсора, А= 1,20. Имеет ирисовую диафрагму.

    Апланатический конденсор - конденсор, состоящий из трех линз, расположенных следующим образом: верхняя линза - плосковыпуклая (плоская сторона направлена к объективу), далее следуют вогнуто-выпуклая и двояковыпуклая линзы. Исправлен в отношении сферической аберрации и комы. Апертура конденсора, А = 1.40. Имеет ирисовую диафрагму.

    Ахроматический конденсор - конденсор, полностью исправленный в отношении хроматической и сферической аберрации.

    Конденсор темного поля - конденсор, предназначенный для получения эффекта темного поля. Может быть специальным или переделан из обычного светлопольного конденсора путем установки в плоскости ирисовой диафрагмы конденсора непрозрачного диска определенного размера.

    Маркировка конденсора.
    На фронтальной части конденсора наносится маркировка числовой апертуры (осветительной).

    МИКРОСКОП - оптический прибор для получения увеличенных изображений объектов или деталей их структуры, не видимых невооруженным глазом; относится к числу наиболее распространенных приборов, применяемых в биологии и медицине.

    Историческая справка

    Способность систем из двух линз увеличивать изображение предметов была известна мастерам, изготовлявшим очки (см.). О таких свойствах полушаровидных и плосковыпуклых линз знали оптики-ремесленники Нидерландов и Сев. Италии в 16 в. Есть сведения, что приблизительно в 1590 г. прибор типа М. был построен Янсеном (Z. Jansen) в Нидерландах.

    Сначала появились» простые М., состоящие из одного объектива (см. Лупа), а затем были сконструированы более сложные М., имеющие, кроме объектива, и окуляр.

    Быстрое распространение и совершенствование М. началось после того, как Галилей (G. Galilei), совершенствуя сконструированную им зрительную трубу, стал использовать ее как своеобразный М. (1609 -1610), изменяя расстояние между объективом и окуляром.

    Позднее, в 1624 г., добившись изготовления более короткофокусных линз, Галилей значительно уменьшил габариты своего микроскопа.

    В 1625 г. членом Римской «Академии зорких» («Academia dei lincei») И. Фабером был предложен термин «микроскоп».

    Первые успехи, связанные с применением М. в научных биол, исследованиях, были достигнуты Гуком (R. Hooke), к-рый первым описал растительную клетку (ок. 1665 г.).

    А. Левенгук с помощью М. обнаружил и зарисовал сперматозоиды, различных простейших, детали строения костной ткани (1673 - 1677).

    В 1668 г. Б]. Дивини, присоединив к окуляру полевую линзу, создал окуляр современного типа; в 1673 г. Гавелий ввел микрометрический винт, а Гертель предложил под столик микроскопа поместить зеркало. Таким образом, М. стали монтировать из тех основных деталей, к-рые входят в состав современного биол. М.

    В начале 18 в. М. появились в России; здесь Эйлер (Z. Euler) впервые разработал методы расчета оптических узлов микроскопа.

    В 18 и 19 вв. М. продолжали совершенствоваться. В 1827 г. Амичи (G. В. Amici) впервые применил в М. иммерсионный объектив.

    В конце 18 - начале 19 в. была предложена конструкция и дан расчет ахроматических объективов для М., благодаря чему их оптические качества значительно улучшились, а увеличение объектов, обеспечиваемое такими М., возросло с 500 до 1000 раз.

    В 1850 г. англ. оптик Сорби (Н. С. Sorby) сконструировал первый микроскоп для наблюдения объектов в поляризованном свете.

    В 1872-1873 гг. Аббе (Е. Abbe) разработал ставшую классической теорию образования изображений несамосветящихся объектов в М. Труды англ. оптика Дж. Сиркса (1893) положили начало интерференционной микроскопии.

    В 1903 г. Р. Жигмонди и Зидентопф (H. Siedentopf) создали ультрамикроскоп, в 1911 г. Саньяком (М. Sagnac) был описан первый двухлучевой интерференционный М., в 1935 г. 3ернике (F. Zernicke) предложил использовать метод фазового контраста для наблюдения в М. прозрачных, слабо рассеивающих свет объектов. В середине 20 в. был изобретен электронный микроскоп, в 1953 г. финским физиологом Вильской (A.Wilska) был изобретен аноптральный М.

    Большой вклад в разработку проблем теоретической и прикладной оптики, усовершенствование оптических систем М. и микроскопической техники внесли М. В. Ломоносов, И. П.Кулибин, Л. И. Мандельштам, Д. С. Рождественский, А. А. Лебедев, С. И. Вавилов, В.П. Линник, Д. Д. Максутов и др.

    Устройство биологического микроскопа

    Биологический М. (рис. 1) крепится на массивном штативе (основании), чаще всего имеющем подковообразную форму. Основание снабжено кронштейном, внутри которого находится коробка микромеханизма тонкой настройки тубуса М. Кроме того, коробка микромеханизма имеет направляющую для кронштейна конденсора. Сверху к коробке микромеханизма при помощи особого кронштейна прикреплен вращающийся центрирующийся столик. Дугообразный тубусодержатель в нижней своей части снабжен макровинтом с двумя барашками, служащим для грубого движения тубуса. Верхняя часть тубусодержателя снабжена снизу головкой для крепления револьвера с гнездами для объективов, а сверху - специальным посадочным гнездом для крепления сменных тубусов: бинокулярной насадки для визуальных исследований и монокулярного прямого тубуса для фотографирования.

    Предметный столик М. имеет устройство для перемещения рассматриваемого препарата в направлениях, перпендикулярных друг другу. Отсчет передвижения препарата в том или другом направлении может быть произведен по шкалам с нониусами с точностью до 0,1 мм.

    Рис. 2. Принципиальная оптическая схема биологического микроскопа с осветителем: 1 - глаз наблюдателя; 2 - окуляр; 3 - рассматриваемый объект (препарат); 3 - образуемое окуляром мнимое перевернутое изображение объекта, лучи от которого, проходя через оптические системы глаза наблюдателя, создают на сетчатке глаза действительное изображение объекта; 3" - перевернутое и увеличенное действительное изображение объекта; 4 - объектив; 5 - конденсор, концентрирующий на объекте пучок света, отражающегося от зеркала; 6 - апертурная диафрагма; 7 - зеркало; 8 - полевая диафрагма; 9 - линза-коллектор осветителя; 10 - источник света; 11 - предметное стекло, на котором располагают рассматриваемый объект; D - расстояние наилучшего видения; стрелками показан ход лучей в оптической системе микроскопа.

    Принципиальная оптическая схема биол. М. приведена на рисунке 2.

    Лучи света, отраженные зеркалом, собираются конденсором. Конденсор (рис. 3) состоит из нескольких линз, вмонтированных в металлическую оправу, закрепляемую винтом в гильзе кронштейна конденсора, и представляет собой светосильный короткофокусный объектив. Светосила (апертура) конденсора зависит от числа линз. В зависимости от методов наблюдения применяют различные виды конденсоров: конденсоры светлого и темного поля; конденсоры, создающие косое освещение (под углом к оптической оси М.); конденсоры для исследования по методу фазового контраста и др. Конденсор темного поля для проходящего света обеспечивает освещение препарата полым конусом света с большим углом; конденсор для отраженного света представляет собой кольцеобразную зеркальную или зеркально-линзовую систему вокруг объектива, так наз. эпиконденсор.

    Между зеркалом и конденсором расположена ирисовая диафрагма (ирис-диафрагма), иначе называемая апертурной, т. к. степень ее раскрытия регулирует апертуру конденсора, к-рая всегда должна быть чуть-чуть ниже апертуры применяемого объектива. Диафрагма в конденсоре может располагаться и между его отдельными линзами.

    Основным оптическим элементом М. является объектив. Он дает действительное перевернутое и увеличенное изображение изучаемого объекта. Объективы представляют собой систему взаимно центрированных линз; ближняя к объекту линза называется фронтальной. Даваемое ею действительное изображение объекта страдает рядом аберраций (см.), свойственных каждой простой линзе, к-рые устраняются вышележащими коррекционными линзами. Большинство этих линз весьма сложно: они изготовлены из разных сортов стекла или даже других оптических материалов (напр., флюорита). Объективы по степени исправления аберраций делятся на несколько групп. Наиболее простыми являются ахроматические объективы, у них исправлена хроматическая аберрация для двух длин волн и сохраняется лишь небольшая остаточная окраска изображения (ореол). Несколько меньшие хроматические аберрации имеют полуапохроматические, или флюоритовые, системы: их хроматическая аберрация исправлена для трех длин волн. Планахроматические и планапохроматические системы устраняют кривизну изображения (т. е. дают плоское поле изображения) и хроматические аберрации. Каждый объектив характеризуется свойственным ему собственным увеличением, фокусным расстоянием, численной апертурой и нек-рыми другими константами. Собственное увеличение зависит от переднего фокусного расстояния объектива, по величине к-рого объективы делятся на сильные (с фокусным расстоянием 1,5-3 мм), среднесильные (с фокусным расстоянием 3,5 мм), средние (фокусное расстояние 5-12 мм) у слабые (фокусное расстояние 12-25 мм) и слабейшие (фокусное расстояние более 25 мм).

    Численная апертура объективов (и конденсоров) определяется произведением Sin половины отверстного угла, под к-рым объект «видит» центр фронтальной линзы объектива (ее «зрачок») и фронт линзы конденсора, на показатель преломления среды, заключенной между этими оптическими системами. Если этой средой является воздух, чередующийся с пластинкой предметного стекла, на к-ром лежит объект, то численная апертура не может быть выше 0,95, т. к. показатель преломления воздуха равен 1. Для того чтобы повысить численную апертуру, объектив погружают (иммергируют) в воду, глицерин или иммерсионное масло, т. е. в такую среду, показатель преломления к-рой выше 1. Такие объективы называют иммерсионными. Объективы М. для изучения объектов в проходящем свете рассчитаны на применение покровных стекол, объективы для исследований в падающем свете позволяют рассматривать объект без покровного стекла.

    Рис. 4. Схематическое изображение окуляра Гюйгенса (I) и хода лучей в нем, образующих изображение (II): 1,9 - полевая линза; 2,6 - диафрагма; 3 - оправа окуляра; 4,8 - глазная линза; 5 - главная оптическая ось; 7 - выходной зрачок; 10 - первичное изображение; H и H" - основные плоскости.

    Изображение, к-рое дает объектив, рассматривают через оптическую систему, называемую окуляром. Изображение в окуляре - увеличенное мнимое. Увеличение окуляров обычно указано на их оправе, напр. 5х, 10х, 15х и т.п. Окуляры можно разделить на две основные группы: нормальные, с обычным полем зрения, и широкоугольные. Из различных систем окуляров наиболее распространенными являются окуляр Гюйгенса и окуляр Рамсдена. Окуляр Гюйгенса (рис. 4), который состоит из двух плоско-выпуклых линз, обращенных выпуклой стороной к объективу, применяется при работе с ахроматическими и планахроматическими объективами при небольших увеличениях. Окуляр Рамсдена (рис. 5) состоит также из двух плоско-выпуклых линз, но обращенных выпуклыми сторонами друг к другу. Этот окуляр можно использовать и в качестве лупы (см.).

    Для исправления (компенсации) остаточных хроматических аберраций объектива служат так наз. компенсационные окуляры; наиболее сильные из них дают увеличение в 20 раз.

    Компенсационные окуляры состоят из комбинации склеенных и одиночных линз, подобранных таким образом, что их хроматическая ошибка обратна остаточному хроматизму апохроматического объектива, и поэтому компенсирующих остаточный хроматизм объектива. Фотоокуляры и проекционные окуляры служат для проектирования изображения на фотопленку или экран. В нек-рых случаях в М. вместо окуляров применяют так наз. гомалы - оптические системы, исправляющие кривизну изображения апохроматических объективов и предназначенные для проектирования изображения и фотографирования. Для измерения размеров изучаемых микроскопических объектов применяют окуляр-микрометр (см.).

    Осветители для микроскопа

    Источником света для М. могут служить самые разнообразные лампы: лампы накаливания, ртутно-кварцевые и др.

    При работе с мощными источниками света для предохранения препаратов от перегревания или высыхания применяют теплозащитные фильтры (цельностеклянные или заполненные жидкостью полупрозрачные пластинки), поглощающие световые лучи неиспользуемых длин волн (напр., лучи длинноволнового участка спектра) и тепловые лучи. При исследовании препарата в проходящем свете источник света располагается под объектом, при исследовании в отраженном свете - над объектом или сбоку от него. В нек-рых, гл. обр. исследовательских, М., напр. МБИ-6, МБИ-15 и др., специальные осветители входят в состав конструкции М. В других случаях применяют выпускаемые промышленностью осветители различных марок. Нек-рые из них имеют трансформаторы, стабилизирующие напряжение, подаваемое на лампу, и реостаты для регулирования накала лампы.

    Наиболее простым по устройству является осветитель ОС-14. Его применяют при наблюдении микрообъектов в проходящем свете в светлом поле. Осветитель ОИ-19 имеет более интенсивный источник света и используется для наблюдений в светлом и темном полях, методом фазового контраста и пр., а также для микрофотографирования в светлом поле. Осветитель ОИ-25 предназначен для наблюдений в проходящем свете. Он устанавливается непосредственно под конденсором вместо зеркала. Этот осветитель часто используют при работе с портативными моделями М. Осветитель ОИ-9М применяют гл. обр. при работе в проходящем свете с поляризационными М.; осветитель ОИ-24 используют при работе с биологическими и поляризационными М. Он предназначен для фотографирования микрообъектов и имеет набор светофильтров. Люминесцентный осветитель СИ-18 применяют для работы с биол., люминесцентными и другими М. Источником света в нем служит ртутно-кварцевая лампа, позволяющая работать со светом УФ-части спектра, как проходящим, так и отраженным.

    Оптическая схема и принцип действия микроскопа

    Построение изображения в М. можно объяснить с точки зрения геометрической оптики. Лучи света от источника света через зеркало и конденсор попадают на объект. Объектив строит действительное изображение объекта. Это изображение рассматривается через окуляр. Общее увеличение М. (Г) определяется как произведение линейного увеличения объектива (β) на угловое увеличение окуляра (Г ок) : Г = β*Г ок; β = Δ/f" об, где Δ - расстояние между задним фокусом объектива и передним фокусом окуляра, a f" об - фокусное расстояние объектива. Увеличение окуляра Г ок = 250/f" ок, где 250 - расстояние от глаза до изображения в мм, f" ок - фокусное расстояние окуляра. Увеличение объективов обычно составляет от 6,3 до 100, а окуляров - от 7 до 15. Общее увеличение М. находится в пределах 44-1500; его можно подсчитать путем умножения величин, характеризующих увеличение окуляра и объектива. Технически возможно создать М., объективы и окуляры к-рых дадут общее увеличение, значительно превышающее 1500. Однако обычно это нецелесообразно. Существенный вклад в построение изображения в М. вносят явления дифракции и интерференции света. Каждая малая точка освещенного объекта, согласно теории Гюйгенса, сама становится как бы центром новой световой волны, распространяющейся по всем направлениям. Все возникающие волны при этом интерферируют, образуя дифракционные спектры, при этом возникают темные и светлые участки (минимумы и максимумы). По теории Аббе изображение в М. получается подобным объекту лишь в том случае, если в объектив попадут все достаточно интенсивные максимумы. Чем меньше максимумов участвует в построении изображения объекта, тем меньше изображение сходно с объектом.

    Типы микроскопов

    Кроме биологического М. различают стереоскопический, контактный, темнопольный, фазово-контрастный, интерференционный, ультрафиолетовый, инфракрасный, поляризационный, люминесцентный, рентгеновский, сканирующий, телевизионный, голографический, микроскопы сравнения и другие типы М. Нек-рые из них, напр, фазово-контрастный и люминесцентный, могут быть при необходимости созданы на базе обычного биол. М. с помощью соответствующих приставок.

    Стереоскопический микроскоп представляет собой, по сути дела, два М., объединенных единой конструкцией таким образом, что левый и правый глаза видят объект под разными углами. Это дает стереоскопический эффект, облегчающий исследование многих объемных объектов. Этот М. широко применяется в различных сферах медико-биологических исследований. Особенно необходим он при проведении микроманипуляций в ходе наблюдения (биол, исследования, микрохирургических операций и т. п.). Удобство ориентировки в поле зрения М. создается включением в его оптическую схему призм, к-рые играют роль оборачивающих систем: изображение в таких стереоскопических М. прямое, а не перевернутое.

    Стереоскопические М. имеют, как правило, небольшое увеличение, не более чем в 120 раз. Выпускаемые М. можно разделить на две группы: М. с двумя объективами (БМ-56 и др.) и М. с одним объективом (МБС-1, МБ С-2, МБС-3 и др.). Бинокулярный М. БМ-56 является наиболее простым из стереоскопических М. и состоит из двух самостоятельных оптических систем, каждая из к-рых дает отдельное изображение.

    Стереоскопический М. МБС-1 работает в проходящем и отраженном свете (рис. 6). Стереоскопический М. МБ С-2 имеет универсальный штатив, к-рый позволяет работать с объектами больших размеров. Стереоскопический М. МБС-3 отличается от предыдущих оптической конструкцией, в к-рой в значительной степени уменьшена сферохроматическая аберрация, исправлена кривизна изображения.

    Существуют также специальный бинокулярный налобный М., предназначенный для микрохирургических операций (см. Микрохирургия , Микрургия), и операционный микроскоп (см.).

    Микроскопы сравнения состоят из двух конструктивно объединенных обычных М. с единой окулярной системой. В таком М. в двух половинах поля зрения видны изображения сразу двух объектов, что дает возможность сравнивать их по цвету, структуре, распределению элементов и т. д. М. такого типа применяют при сравнительном изучении каких-либо объектов в норме и патологии, прижизненном состоянии и после фиксации или окраски различными методами. М. сравнения используются и в судебной медицине.

    Контактный микроскоп , используемый для прижизненного изучения различных биол, структур, отличается от других М. наличием особых контактных объективов, к-рые представляют собой видоизмененные иммерсионные объективы. К ним первоначально приклеивали тонкую пластинку стекла и создавали непосредственный контакт с поверхностью изучаемого объекта. В 1963 г. А. П. Грамматин предложил и рассчитал объективы, предназначенные специально для контактной микроскопии. Фокусировка в контактном М. осуществляется специальной оптической системой, т. к. объектив неподвижно прижат к объекту. В флюоресцентном контактном М. изучаемый участок объекта освещается коротковолновыми лучами через контактный объектив с помощью опак-иллюминатора с интерференционным светоделителем.

    Темнопольный микроскоп , используемый в работе по методу темного поля (см. Темнопольная микроскопия), позволяет наблюдать изображения прозрачных, не поглощающих свет объектов, не видимых при освещении по методу светлого поля. Такими объектами часто являются биол. объекты. В темнопольном М. свет от осветителя и зеркала направляется на препарат специальным конденсором, так наз. конденсором темного поля. По выходе из конденсора основная часть лучей света, не изменившая своего направления при прохождении через прозрачный препарат, образует пучок в виде полого конуса, к-рый не попадает в объектив, находящийся внутри этого конуса. Изображение в темнопольном М. создается лишь небольшой частью лучей, рассеянных микрочастицами препарата внутрь этого полого конуса и прошедшими через объектив. Темно-польные М. применяют при микрургических операциях на отдельных клетках, при изучении механизма репарационного процесса, регистрации различного состояния клеточных элементов и т. п. Методом темнопольной микроскопии можно также исследовать объекты, размеры к-рых гораздо меньше разрешающей способности светового М. (см. Ультрамикроскоп).

    Фазово-контрастный микроскоп и его разновидность - аноптральный М. служат для получения изображений прозрачных и бесцветных объектов, не видимых при наблюдении по методу светлого поля. Обычно эти объекты не могут быть окрашены, т. к. окраска губительно действует на их структуру, локализацию хим. соединений в клеточных органеллах и т. п. (см. Фазово-контрастная микроскопия). Этот метод широко применяется в микробиологии. В клинико-диагностических лабораториях он используется для исследования мочи, нефиксированных тканей (напр., при диагностике злокачественных опухолей), нек-рых фиксированных гистол. препаратов (cм. Гистологические методы исследования).

    Рис. 7. Оптическая схема фазово-контрастного микроскопа с осветителем: 1 - осветитель; 2 - апертурная диафрагма; 3 - конденсор; 4 - изучаемый объект; 4" - изображение изучаемого объекта; 5 - объектив; 6 - фазовая пластинка, на поверхности которой имеется кольцевой выступ или кольцевая канавка, так называемое фазовое кольцо (сплошными стрелками показан ход обычных лучей, пунктирными - диафрагмированных).

    В фазово-контрастном М. (рис. 7) в переднем фокусе конденсора устанавливают апертурную диафрагму, отверстие к-рой имеет форму кольца. Изображение, построенное ею, образуется вблизи заднего фокуса объектива, и там же устанавливают фазовую пластинку. Она может быть установлена и не в фокусе объектива (часто фазовое кольцо наносят прямо на поверхность одной из линз объектива), но лучи света от осветителя, проходя через объект, должны полностью проходить через фазовое кольцо, к-рое значительно их ослабляет и изменяет их фазу на четверть длины волны. Лучи, даже немного отклоненные (рассеянные) в препарате, не попадают в фазовое кольцо и не претерпевают сдвига фазы. С учетом фазового сдвига лучей света в материале препарата разность фаз между отклоненными и неотклоненными лучами усиливается; в результате интерференции света в плоскости изображения лучи усиливают или ослабляют друг друга, давая контрастное изображение структуры препарата.

    Промышленность выпускает различные фазово-контрастные устройства к М. Фазово-контрастное устройство КФ-4 состоит из конденсора и набора объективов. Его можно применять с биол., поляризационными, люминесцентными и другими М. Фазово-контрастное устройство КФ-5 отличается от КФ-4 тем, что фазовые пластинки на его объективах нанесены в виде двух колец, контрастность изображения также несколько выше. Фазово-контрастное устройство МФА-2 отличается от КФ-4 размером фазовых колец и способом их нанесения.

    Аноптральный М. является разновидностью фазово-контрастного М. и позволяет исследовать малоконтрастные живые объекты (простейшие, бактерии, вирусы), но дает более контрастное изображение, чем обычный фазово-контрастный микроскоп. Нежелательным при применении аноптрального М. можно считать появление в нек-рых случаях ореолов вокруг изображения объектов. Промышленностью выпускается комплект для аноптральной микроскопии КАФ-2 и др.

    Интерференционный микроскоп предназначен для решения тех же задач, что и фазовоконтрастный М., однако между ними имеются и существенные различия. В интерференционном М. можно наблюдать участки объектов не только с большими, но и с малыми градиентами показателя преломления или толщины, т. е. можно изучать детали прозрачных объектов независимо от их формы и размеров, а не только их контуры, как в фазово-контрастном М.

    Принцип, лежащий в основе конструкции интерференционного М., состоит в том, что каждый луч, входящий в М., раздваивается: один из полученных лучей направляется сквозь наблюдаемую частицу объекта, а другой - мимо нее по той же или дополнительной оптической ветви М. (рис. 8). В окулярной части такого М. оба луча вновь соединяются и интерферируют между собой.

    Интерференционный М. пригоден для изучения живых и нефиксированных тканей, он позволяет с помощью различных устройств производить измерения, на основании к-рых можно вычислить, напр., массу сухого вещества растительной: или животной клетки, концентрацию, размеры объекта, содержание белков в живых и фиксированных объектах и т. п. (рис. 9).

    Промышленность выпускает большое число различных интерференционных М., предназначенных для биол., мед., металлографических и других исследований. Примером может служить интерференционный биол, микроскоп МБИН-4, предназначенный для исследования образцов в проходящем свете интерференционным методом. Он позволяет так-же измерять разности хода- лучей, возникающие при их прохождении через различные участки объекта.

    Метод интерференционного контраста часто сочетают с другими методами микроскопии, напр. с наблюдением объектов в поляризованном свете, в УФ-свете и т. п., что позволяет, напр., определить содержание нуклеиновых к-т в общей сухой массе объекта.

    Ультрафиолетовый и инфракрасный микроскопы предназначены для исследования объектов в ультрафиолетовых (УФ) и инфракрасных (ИК) лучах. Эти М. снабжены фотокамерами, флюоресцирующими экранами или электронно-оптическими преобразователями для фиксации изображения. Разрешающая способность УФ-микроскопов значительно выше, чем разрешающая способность обычных М., т. к. их предельное разрешение, зависящее от длины волны, ниже. Длина волны света, используемого в УФ-микроскопии, 400 - 250 нм, тогда как длина волны видимого света 700-400 нм. Однако главное преимущество УФ-микроскопов заключается в том, что частицы многих веществ, прозрачные в видимом свете, сильно поглощают УФ-излучение определенных длин волн и, следовательно, легко различимы в УФ-изображениях. Характерными спектрами поглощения в УФ-области спектра обладает ряд веществ, содержащихся в растительных и животных клетках. Такими веществами являются белки, пуриновые основания, пиримидиновые основания, ароматические аминокислоты, нек-рые липиды, витамины, тироксин и другие биологически активные соединения.

    Исследовательский УФ-микроскоп МУФ-6 (рис. 10) предназначен для биол, исследований в проходящем и отраженном свете. Он позволяет проводить фотографирование объектов, а также фотографическую регистрацию оптической плотности и спектров поглощения участков образца при освещении их монохроматическим светом.

    Микрофотометрическая ультрафиолетовая установка МУФ-5 предназначена для исследования биол, объектов в проходящем свете. На ней можно производить автоматическую запись спектров поглощения, с помощью сканирующего предметного столика записывать изменения оптической плотности вдоль выбранного направления в нужном спектральном интервале, фотографировать флюоресценцию объектов.

    Наблюдение объектов с помощью инфракрасного микроскопа также требует преобразования невидимого для глаза изображения в видимое путем его фотографирования или с помощью электронно-оптического преобразователя. Инфракрасный микроскоп, напр. МИК-1 (рис. 11), позволяет изучить внутреннюю структуру непрозрачных для видимого света объектов (напр., зоол., палеонтол., антропол, препаратов и пр.). Выпускаемый промышленностью инфракрасный микроскоп МИК-4 позволяет рассматривать объекты при свете с длиной волн от 750 до 1200 нм, в т. ч. и в поляризованном свете.

    Поляризационный микроскоп позволяет наблюдать изучаемые объекты в поляризованном свете и служит для изучения препаратов, оптические свойства к-рых неоднородны, т. е. так наз. анизотропных объектов (см. Анизотропия). Такими объектами являются мио- и нейрофибриллы, коллагеновые волокна и т. п. Свет, излучаемый осветителем в системе такого М., пропускают через поляризатор; поляризация (см.), сообщенная при этом свету, меняется при последующем его прохождении через препарат (или отражении от него). Это дает возможность выделить различные элементы в препарате и их ориентацию в пространстве, что особенно важно при изучении медико-биол. объектов. В поляризационном М. исследования можно производить как в проходящем, так и в отраженном свете. Узлы поляризационных М. предназначены для точных количественных измерений: окуляры имеют перекрестия, микрометрические шкалы и т. п.; вращающийся предметный столик имеет угломерный лимб.

    Промышленность выпускает поляризационные М. различного назначения. Примером такого М. является универсальный поляризационный микроскоп МИН-8 (рис. 12), к-рый имеет необходимое оснащение и дополнительные принадлежности для других поляризационных исследований, кроме микроскопических. Лучшими зарубежными приборами такого типа являются универсальные микроскопы «Ортолюкс-Поль» фирмы «Лейтц» (ФРГ) и «Поль» фирмы «Оптон».

    Люминесцентный микроскоп. Устройство люминесцентных М. основано на нек-рых физ.-хим. законах люминесценции (см. Люминесцентная микроскопия). Высокая чувствительность люминесцентных М. используется в микробиол., иммунол., цитол, и биофизических исследованиях.

    Выпускаемый промышленностью люминесцентный микроскоп МЛ-3 предназначен для наблюдения и фотографирования объектов в свете их видимой флюоресценции в отраженном свете. Люминесцентный микроскоп МЛ-2 отличается от МЛ-3 возможностью наблюдения объектов в проходящем свете. Люминесцентные устройства, используемые чаще вместе с обычными М., содержат осветитель с ртутной лампой, набор светофильтров и так наз. опак-иллюминатор для освещения препаратов сверху. В сочетании с обычными люминесцентными М. используют фотометрическую наладку ФМЭЛ-1, к-рая служит для количественного измерения интенсивности видимой флюоресценции. Микрофлюориметр МЛИ-1 применяют для исследования ультрафиолетовой и видимой флюоресценции в отраженном свете. Прибор позволяет производить количественные измерения флюоресценции, фотографирование, измерение спектров флюоресценции, возбуждения флюоресценции.

    Рентгеновский микроскоп предназначен для исследования объекта в рентгеновских лучах. Фокусировка лучей в рентгеновских М. имеет свои особенности: для этого в них используются изогнутые зеркальные плоскости. В рентгеновском М. имеются также микрофокусный источник рентгеновского излучения и детекторы изображения: фотопленки или электтронно-оптические преобразователи. Рентгеновские М. этого типа имеют ряд недостатков, связанных со структурными несовершенствами монокристаллов и сложностями точной обработки зеркал, ввиду чего они не получили широкого применения.

    Принцип проекционных, или «теневых», рентгеновских М. основан на методе проекции в расходящемся пучке лучей от точечного сверхмикрофокусного источника рентгеновских лучей. Такие М. имеют также камеры для микрообъекта и регистрирующего устройства. Линейное разрешение М. этого типа до 0,1 мкм.

    Рентгеновские М. применяют при исследовании объектов, различные участки к-рых избирательно поглощают рентгеновские лучи, а также объектов, непрозрачных для иных лучей. Нек-рые модели рентгеновских М. оснащены преобразователями рентгеновского излучения в видимое и телевизионными устройствами.

    Сканирующий микроскоп позволяет осуществлять последовательный осмотр объекта в каждой точке или его изображения фотоэлектрическим преобразователем с измерением интенсивности света, прошедшего через объект или отраженного от него. Сканирование объекта сводится к последовательному измерению коэффициента пропускания или отражения лучей света от объекта в каждой его точке и преобразованию его в электрический сигнал. Вид характеристик микроструктур, получаемых в результате обработки видеосигналов, определяется алгоритмами (см.), вводимыми в соответствующие вычислительные устройства; т. о., сканирующий М. представляет собой сочетание собственно М. и информационной сканирующей системы. Он является составной частью конструкции анализаторов и счетчиков частиц, телевизионных М., сканирующих и интегрирующих микрофотометров и т. д. Сканирующие М. используют в микробиологии, цитологии, генетике, гистологии, физиологии и других областях биологии и медицины.

    Является перспективным использование сканирующих М. или конструкций, в состав к-рых они входят, в диагностических целях, для изучения строения и структуры тканей, в т. ч. и крови, выявления в них возрастных и патол, изменений, обнаружения атипичных клеток в срезах тканей и т. п. В экспериментальной медицине сканирующие М. применяют с целью контроля роста и развития тканей и клеток в культурах и т. п.

    Промышленность выпускает сканирующие устройства, выполненные в виде насадок к световому микроскопу.

    Системы сканирования могут быть телевизионными и механическими. Телевизионные применяют в основном для анализа геометрических и статистических характеристик и классификации микрообъектов. Механические более универсальны и точны. Они позволяют работать в заданном спектральном интервале в УФ-области спектра и часто применяются для фотометрических измерений.

    Телевизионный микроскоп конструктивно сочетает в себе М. с телевизионной техникой. Телевизионные М. работают по схеме микропроекции: изображение объекта преобразуется в последовательные электрические сигналы, к-рые затем воспроизводят это изображение в увеличенном масштабе на экране кинескопа. В зависимости от способа освещения исследуемого объекта телевизионные М. подразделяют на два типа: М. с передающей трубкой и М. с бегущим пятном.

    Телевизионный М. с передающей трубкой представляет собой простую комбинацию оптического М. и телевизионного канала. Изображение, даваемое М., проецируется на экран кинескопа. При этом изображение сигналов можно наблюдать и на большом экране даже при малом освещении самого объекта.

    В телевизионном М. с бегущим пятном используют оптическое сканирование объекта движущимся лучом света.

    Телевизионные устройства часто используют в сочетании с фазовоконтрастными М. Этим достигается наибольшая контрастность изображения. Высокая яркость изображений в телевизионных М. позволяет использовать их для проведения фото- и киносъемок как неподвижных, так и движущихся объектов. Телевизионные М. можно использовать и как дистанционный прибор, т. е. сам телевизионный приемник может быть установлен на значительном расстоянии от М., что особенно важно при исследовании объектов, близость к к-рым опасна для наблюдателя (напр., радиоактивных). В телевизионном микроскопе возможно изучение объектов в УФ- и ИК-лучах; его используют также как телевизионный микроспектрофотометр. При использовании дополнительных электронных систем возможно получение цветного изображения. На основе телевизионных М. созданы автоматические счетчики микрочастиц (см. Автоанализаторы). Изображение в этом случае специальными счетными приспособлениями преобразуется в серию электрических сигналов, что позволяет просто и с большой скоростью производить подсчет числа различных частиц в препарате (эритроцитов и лейкоцитов в крови, колоний бактерий, частиц аэрозолей в воздухе, кристаллов и зерен в минералах и т. п.), а также целый комплекс других измерений.

    Промышленность выпускает телевизионные М. различных типов. Ультрафиолетовый телевизионный М. амер. фирмы «Ньютроникс Рисерч» представляет собой телевизионный микроспектрофотометр. Он дает трехцветное изображение объекта, соответствующее трем выбранным длинам волн в УФ-части спектра. Такой М. позволяет производить абсорбционные измерения.

    Количественный телевизионный М. «КТМ» англ. фирмы «Металз Рисерч» дает возможность измерять отдельно элементы изображения с разной освещенностью в пределах шести ступеней интенсивности, определять процент площади, занимаемой нек-рой составной частью структуры, определять среднее число частиц для расчета их среднего размера, оценивать распределение частиц по группам крупности.

    Голографический микроскоп служит для построения изображений объектов голографическим методом, т. е. методом получения объемного изображения объекта, основанным на интерференции волн (см. Голография). Голограмма позволяет получить изображение, к-рое является результатом регистрации не только амплитуд (как в фотографии), но и фаз световых волн, рассеянных объектом. В голографическом М. источником волн служит лазерный луч (см. Лазер). При использовании импульсных лазерных источников возможно получение голограмм движущихся объектов. Конструктивное сочетание голографических устройств с обычным М. позволяет располагать объект вертикально, что необходимо при исследовании, напр., клеточных суспензий. Голограмма получается с изображения, созданного объективом. Восстановленная голограмма воспроизводит изображение, к-рое наблюдают через окуляр М. Применение голографического метода является перспективным для изучения прозрачных (фазовых) объектов; его можно также использовать для получения изображений микрообъектов, содержащих медленно движущиеся области в статическом окружении (циркуляция крови, поглощение пузырьков воздуха в капиллярах и т. д.). Голографический М. нашел применение в криоскопии для изучения различных клеток в норме и при замораживании (напр., наблюдение за процессами внутриклеточной кристаллизации). В голографическом М. возможно получение разрешения ок. 1 мкм, а также черно-белых и цветных голограмм.

    Голографические устройства находят все более широкое применение в качестве автоматических анализаторов микрочастиц. Распознавание микрочастиц с использованием этого метода ускоряется в десятки тысяч раз. Поиск объекта ведут одновременно по всей голограмме. Для управления работой и обработки результатов голографические установки соединяют с ЭВМ.

    Библиография: Барский И. Я., Поляков Н. И. и Якубенас В. А. Контактная микроскопия, М., 1976, библиогр.; Бернштейн А. С., Джохад-з e Ш. Р. и Перова Н. И. Фотоэлектрические измерительные микроскопы, М., 1976, библиогр.; Воронин В. В. Основы теории микроскопа, Тбилиси, 1965; М а й с т р о в Л. Е. Приборы и инструменты исторического значения, Микроскопы, М., 1974; Машинный анализ микроскопических объектов, под ред. Г. М.Франка, М., 1968; Панов В. А. и А н д-р e e в Л. Н. Оптика микроскопов, Л., 1976, библиогр.: Сканирующая техника в исследовании клеточных популяций, клеток, органоидов и макромолекул, под ред. Г. М. Франка, Пущино-на-Оке, 1973; Скворцов Г. Е.и др. Микроскопы, Л., 1969, библиогр.; Федин Л. А. Микроскопы, принадлежности к ним и лупы, М., 1961, библиогр.; ЧернухА. М. и др. Некоторые вопросы применения голографии в медико-биологических исследованиях, Мед. техн., № 1, с. 30, 1976, библиогр.

    Ю. В. Агибалов, Н. Г. Будковская, А. Б. Цыпин.

    Отличия между цифровыми микроскопами и оптическими

    Отличия между цифровыми микроскопами и оптическими

    Оптический микроскоп, который также называют световой микроскоп, является устройством использующим видимый свет и систему линз для увеличения изображения образцов. Оптические микроскопы являются самым старейшим видом оптических приборов для получения увеличенных изображений объектов, возможно, первые из них были разработаны в 17 веке. Изображение полученное с помощью оптического микроскопа может быть захвачено обычной светочувствительной фотокамерой для создания микрофотографий. Фотокамера может монтироваться вместо штатных окуляров или в отдельный оптический порт. Такие микроскопы именуются тринокулярными.

    Цифровой микроскоп

    Цифровой микроскоп - это микроскоп оснащенный цифровой камерой позволяющей исследовать образцы через компьютер. Такие микроскопы могут обладать частичным или полным компьютерным управлением с различным уровнем автоматизации. Цифровая микроскопия позволяет выполнять более глубокий анализ увеличенного изображения, например, измерение расстояний и площадей.

    Цифровые USB микроскопы малой мощности, в упрощении представляют собой web камеры, подключаемые к компьютеру через USB порт. В таких микроскопах не используется поток проходящего света, а применяются встроенные светодиоды и падающий от них свет. Лучи света отражаются от образца и попадают в фотообъектив, через USB порт увеличенное изображение отображается на мониторе компьютера. Увеличенное таким образом видео и фотоизображение может быть сохранено на компьютере либо обработано в реальном режиме времени. Цифровые USB микроскопы малой мощности с увеличением 200x широко доступны потребителю из-за своей низкой стоимости, от 1190 рублей (Supereyes B005). Кроме микроскопов малой мощности, существуют и более мощные устройства: с возможностью увеличения 300x (Supereyes B010), 500x (Supereyes B008), 1000x (Supereyes T001 2M).

    Цифровой USB микроскоп является универсальным инструментом, который поможет при изучении и исследовании плоских объектов, таких как монеты, печатные платы, документы, кожа, разнообразные растения и многое другое.

    Преимущества цифровых микроскопов перед оптическими

    Цифровые USB микроскопы обладают рядом преимуществ перед оптическими, такими как размер самого микроскопа, возможность проведения фото и видео записи, обработка изображения в реальном времени, выполнение различных измерении и многое другое.