Кратковременный вихрь возникающий перед холодными атмосферными фронтами. Атмосферные вихри, тропические циклоны, смерчи, шквалы и ураганы Кратковременный вихрь возникающий перед холодными

Атмосфера ("атмос" - пар) - воздушная оболочка Земли. Атмосфера по характеру изменения температуры с высотой, делится на несколько сфер

Лучистая энергия Солнца является источником движения воздуха. Между теплыми и холодными массами возникает разность температуры и атмосферного воздуха давления. Это порождает ветер.

Для обозначения движения ветра применяют различные понятия: смерч, буря, ураган, шторм, тайфун, циклон и пр.

Чтобы их систематизировать, во всем мире пользуются шкалой Бофорта , которая оценивает силу ветра в баллах от 0 до 12 (см. табл.).

Атмосферные фронты и атмосферные вихри порождают грозные природные явления, классификация которых приведена на рис. 1.9.

Рис. 1.9. Природные опасности метеорологического характера.

В табл. 1.15 приведена характеристика атмосферных вихрей.

Циклон (ураган) - (греч. кружащийся) - это сильное атмосферное возмущение, круговое вихревое движение воздуха с понижением давления в центре.

В зависимости от места зарождения циклоны подразделяются на тропические ивнетропические . Центральная часть циклона, обладающая наиболее низким давлением, слабой облачностью и слабыми ветрами, называется "глазом бури" ("глазом урагана").

Скорость движения самого циклона 40 км/ч (редко до 100 км/ч). Тропические циклоны (тайфуны) движутся быстрее. А скорость ветровых вихрей до 170 км/ч.

В зависимости от скорости различают: - ураган (115-140 км/ч); - сильный ураган (140-170 км/ч); - жесткий ураган (более 170 км/ч).

Ураганы наиболее распространены на Дальнем Востоке, в Калининградской и Северо-западных областях страны.

Предвестники урагана (циклона): - понижение давления в низких широтах и повышение в высоких; - наличие возмущений любого рода; - переменчивые ветры; - морская зыбь; - неправильные приливы и отливы.

Таблица 1.15

Характеристика атмосферных вихрей

Атмосферные вихри

название

Характеристика

Циклон (тропический и внетропический) - вихри, в центре которых низкое давление

Тайфун (Китай, Япония) Бэгвиз (Филлипины) Вилли-Вилли (Австралия) Ураган (Сев. Америка)

Диаметр вихря 500-1000 км Высота 1-12 км Диаметр области затишья ("глаз бури") 10-30 км Скорость ветра до 120 м/с Время действия - 9-12 суток

Смерч - восходящий вихрь, состоящий из быстро вращающего воздуха, смешанного с частицами влаги, песка, пыли и других взвесей, воздушная воронка, спускающаяся из низкого облака на водную поверхность или сушу

Торнадо (США, Мексика) Тромб (Зап. Европа)

Высота - несколько сот метров. Диаметр - несколько сот метров. Скорость перемещения до 150-200 км/ч Скорость вращения вихрей в воронке до 330 м/с

Шквал - кратковременные вихри, возникающие перед холодными атмосферными фронтами, нередко сопровождаемые ливнем или градом и возникающие во все сезоны года и в любое время суток.

Скорость ветра 50-60 м/с Время действия до 1 часа

Ураган - ветер большой разрушительной силы и значительной продолжительности, возникающие в основном с июля по октябрь в зонах сближения циклона и антициклона. Иногда сопровождается ливнями.

Тайфун (Тихий океан)

Скорость ветра более 29 м/с Продолжительность 9-12 дней Ширина - до 1000 км

Буря - ветер, скорость которого меньше ураганного.

Продолжительность - от нескольких часов до нескольких суток Скорость ветра 15-20 м/с Ширина - до нескольких сот километров

Бора - очень сильный порывистый холодный ветер приморских районов (Италия, Югославия, Россия), приводящий в зимнее время к обледенению портовых сооружений и кораблей

Сарма (на Байкале) Бакинский норд

Продолжительность - несколько суток Скорость ветра 50-60 м/с (иногда до 80 м/с)

Фён - жаркий сухой ветер Кавказа, Алтая, Ср. Азии (дует с гор в долину)

Скорость 20-25 м/с, высокая температура и низкая относительная влажность воздуха

Поражающие факторы урагана приведены в табл. 1.16.

Таблица 1.16

Поражающие факторы урагана

Смерч (торнадо) - чрезвычайно быстро вращающаяся воронка, свисающая из кучево-дождевого облака и наблюдающаяся как "воронкообразное облако " или "труба". Классификация смерчей дана в табл. 3.1.26.

Таблица 1.17

Классификация смерчей

Виды смерчей

По типу смерчевых облаков

Роторные; - кольцевые низкие; - башенные

По форме строения стенки воронки

Плотные; - расплывчатые

По соотношению длины и ширины

Змееобразные (воронкообразные); - хоботообразные (колонноподобные)

По скорости разрушений

Быстрые (секунды); - средние (минуты); - медленные (десятки минут).

По скорости вращения вихря в воронке

Экстремальные (330 м/с и более); - сильные (150-300 м/с); - слабые(150 м/с и менее).

На территории России смерчи распространены: на севере - у Соловецких островов, на Белом море, на юге - на Черном и Азовском морях. - Малые смерчи короткого действия проходят путь менее километра. - Малые смерчи значительного действия проходят путь в несколько километров. - Крупные смерчи проходят путь в десятки километров.

Поражающие факторы смерчей даны в табл. 1.18.

Таблица 1.18

Поражающие факторы смерчей

Буря - длительный, очень сильный ветер со скоростью более 20 м/с, наблюдающийся при прохождении циклона и сопровождающийся сильным волнением на море и разрушениями на суше. Длительность действия - от нескольких часов до нескольких суток.

В табл. 1.19 приведена классификация бурь.

Таблица 1.19

Классификация бурь

Классификационная группировка

Вид бури

В зависимости от времени года и состава вовлеченных в воздух частиц

Пыльные; - беспыльные; - снежные (пурга, буран, метель); - шквальные

По цвету и составу пыли

Черные (чернозем); - бурые, желтые (суглинки, супеси); - красные (суглинки с окислами железа); - белые (соли)

По происхождению

Местные; - транзитные; - смешанные

По времени действия

Кратковременные (минуты) с небольшим ухудшением видимости; - кратковременные (минуты) с сильным ухудшением видимости; - длительные (часы) с сильным ухудшением видимости

По температуре и влажности

Горячие; - холодные; - сухие; - влажные

Поражающие факторы бурь приведены в табл. 1.20.

Таблица 1.20.

Поражающие факторы бурь

Вид бури

Первичные факторы

Вторичные факторы

Высокая скорость ветра; - сильное волнение моря

Разрушение строений, плавсредств; - разрушение, размыв побережья

Пыльная буря (суховей)

Высокая скорость ветра; - высокая температура воздуха при крайне низкой относительной влажности; - потеря видимости, пыль.

Разрушение строений; - иссушение почв, гибель с/х растений; - вынос плодородного слоя почвы (дефляция, эрозия); - потеря ориентации.

Снежная буря (буран, пурга, метель)

Высокая скорость ветра; - низкая температура; - потеря видимости, снег.

Разрушение объектов; - переохлаждение; - обморожение; - потеря ориентации.

Высокая скорость ветра (в течение 10 минут скорость ветра возрастает с 3 до 31 м/с)

Разрушение строений; - бурелом.

Действия населения

Гроза - атмосферное явление, сопровождающееся молниями и оглушительными раскатами грома. На Земном шаре одновременно происходит до 1800 гроз.

Молния - гигантский электрический искровой разряд в атмосфере в виде яркой вспышки света.

Таблица 1.21

Виды молний

Таблица 1.21

Поражающие факторы молнии

Действия населения при грозе.

Град - частички плотного льда, выпадающего в виде осадков из мощных кучево-дождевых облаков.

Туман - помутнение воздуха над поверхностью Земли, вызываемое конденсацией водяного пара

Гололед - смерзшиеся капли переохлажденного дождя или тумана, осаждающиеся на холодной поверхности Земли.

Снежные заносы - обильное выпадение снега при скорости ветра свыше 15 м/с и продолжительности снегопада более 12 часов.

Вихри в воздухе. Экспериментально известен ряд способов создания вихревых движений. Описанный выше способ получения дымовых колец из ящика позволяет получать вихри, радиус и скорость которых имеют порядок 10-20 см и 10 м/сек соответственно, в зависимости от диаметра отверстия и силы удара. Такие вихри проходят расстояния 15-20 м.

Вихри гораздо большего размера (радиусом до 2 м) и большей скорости (до 100 м/сек) получаются с помощью ВВ. В трубе, закрытой с одного конца и заполненной дымом, производится подрыв заряда ВВ, расположенного у дна. Вихрь, получаемый из цилиндра радиусом 2 м при заряде весом около 1 кг, проходит расстояние около 500 м. На большей части пути вихри, получаемые таким способом, имеют турбулентный характер и хорошо описываются законом движения, который изложен в § 35.

Механизм образования таких вихрей качественно ясен. При движении в цилиндре воздуха, вызванном взрывом, на стенках образуется пограничный слой. На краю цилиндра пограничный слой отрывается, в

результате чего создается тонкий слой воздуха со значительной завихренностью. Затем происходит сворачивание этого слоя. Качественная картина последовательных этапов приведена на рис. 127, где изображен один край цилиндра и срывающийся с него вихревой слой. Возможны и другие схемы образования вихрей.

При малых числах Рейнольдса спиральная структура вихря сохраняется довольно долго. При больших числах Рейнольдса, в результате неустойчивости, спиральная структура разрушается сразу и происходит турбулентное перемешивание слоев. В результате образуется вихревое ядро, распределение завихренности в котором можно найти, если решить поставленную в § 35 задачу, описываемую системой уравнений (16).

Однако в настоящий момент нет никакой схемы расчета, которая позволяла бы по заданным параметрам трубы и весу ВВ определять начальные параметры сформировавшегося турбулентного вихря (т. е. его начальные радиус и скорость). Эксперимент показывает, что для трубы с заданными параметрами существует наибольший и наименьший вес заряда, при которых вихрь образуется; на его образование сильно влияет и расположение заряда.

Вихри в воде. Мы уже говорили, что вихри в воде можно получать аналогичным способом, выталкивая поршнем из цилиндра некоторый объем жидкости, подкрашенной чернилами.

В отличие от воздушных вихрей, начальная скорость которых может достичь 100 м/сек и более, в воде при начальной скорости 10-15 м/сек вследствие сильного вращения жидкости, движущейся вместе с вихрем, возникает кавитационное кольцо. Оно возникает в момент образования вихря при срыве пограничного слоя с края Цилиндра. Если пытаться получить вихри со скоростью

более 20 м/сек, то кавитационная каверна становится столь большой, что возникает неустойчивость и вихрь разрушается. Сказанное относится к диаметрам цилиндра порядка 10 см возможно, что с увеличением диаметра удастся получить устойчивые вихри, движущиеся с большой скоростью.

Интересное явление возникает, когда вихрь движется в воде вертикально вверх по направлению к свободной поверхности. Часть жидкости, образующая так называемое тело вихря, взлетает над поверхностью, сначала почти без изменения формы - водяное кольцо выпрыгивает из воды. Иногда скорость вылетевшей массы в воздухе увеличивается. Это можно объяснить отбрасыванием воздуха, которое происходит на границе вращающейся жидкости. В дальнейшем вылетевший вихрь разрушается под действием центробежных сил.

Падение капель. Легко наблюдать вихри, образующиеся при падении капель чернил в воду. Когда чернильная капля попадает в воду, образуется кольцо, состоящее из чернил и движущееся вниз. Вместе с кольцом движется некоторый объем жидкости, образующий тело вихря, которое также окрашено чернилами, но гораздо слабее. Характер движения сильно зависит от соотношения плотностей воды и чернил. При этом оказываются существенными различия плотности в десятые доли процента.

Плотность чистой воды меньше, чем чернил. Поэтому при движении вихря на него действует сила, направленная вниз, по ходу вихря. Действие этой силы приводит к увеличению импульса вихря. Импульс вихря

где Г - циркуляция или интенсивность вихря, и R - радиус вихревого кольца, а скорость движения вихря

Если пренебречь изменением циркуляции, то из этих формул можно сделать парадоксальный вывод: действие силы в направлении движения вихря приводит к уменьшению его скорости. Действительно, из (1) следует, что с ростом импульса при постоянной

циркуляции должен увеличиваться радиус R вихря, но из (2) видно, что при постоянной циркуляции с ростом R скорость падает.

В конце движения вихря чернильное кольцо распадается на 4-6 отдельных сгустков, которые в свою очередь превращаются в вихри с маленькими спиральными кольцами внутри. В некоторых случаях эти вторичные кольца распадаются еще раз.

Механизм этого явления не очень ясен, и существует несколько его объяснений. В одной схеме главную роль играет сила тяжести и неустойчивость так называемого тейлоровского типа, которая возникает, когда в поле тяжести более плотная жидкость находится над менее плотной, причем обе жидкости вначале покоятся. Плоская граница, разделяющая две такие жидкости, неустойчива - она деформируется, и отдельные сгустки более плотной жидкости проникают в менее плотную.

При движении чернильного кольца циркуляция на самом деле уменьшается, и это приводит к полной остановке вихря. Но на кольцо продолжает действовать сила тяжести, и в принципе оно должно было бы опускаться дальше как целое. Однако возникает тейлоровская неустойчивость, и в результате кольцо распадается на отдельные сгустки, которые опускаются под действием силы тяжести и в свою очередь образуют маленькие вихревые кольца.

Возможно и другое объяснение этого явления. Увеличение радиуса чернильного кольца приводит к тому, что часть жидкости, движущаяся вместе с вихрем, принимает форму, изображенную на рис. 127 (стр. 352). В результате действия на вращающийся тор, состоящий из линий тока, сил, аналогичных силе Магнуса, элементы кольца приобретают скорость, направленную перпендикулярно скорости движения кольца как целого. Такое движение неустойчиво, и происходит распад на отдельные сгустки, которые снова превращаются в маленькие вихревые кольца.

Механизм образования вихря при падении капель в воду может иметь разный характер. Если капля падает с высоты 1-3 см, то ее вход в воду не сопровождается всплеском и свободная поверхность деформируется слабо. На границе между каплей и водой

образуется вихревой слой, сворачивание которого и приводит к образованию кольца чернил, окруженного захваченной вихрем водой. Последовательные стадии образования вихря в этом случае качественно изображены на рис. 128.

При падении капель с большой высоты механизм образования вихрей иной. Здесь падающая капля, деформируясь, растекается на поверхности воды, сообщая на площади, много большей ее диаметра, импульс с максимальной интенсивностью в центре. В результате на поверхности воды образуется впадина, она по инерции расширяется, а потом происходит схлопывание и возникает кумулятивный всплеск - султан (см. гл. VII).

Масса этого султана в несколько раз больше массы капли. Падая под действием силы тяжести в воду, султан образует вихрь по уже разобранной схеме (рис. 128); на рис. 129 изображена первая стадия падения капли, приводящая к образованию султана.

По этой схеме образуются вихри, когда на воду падает редкий дождь с крупными каплями - поверхность воды покрывается тогда сеткой небольших султанчиков. Вследствие образования таких султанчиков каждая

капля значительно наращивает свою массу, и поэтому вихри, вызванные ее падением, проникают на довольно большую глубину.

По-видимому, это обстоятельство можно положить в основу объяснения известного эффекта гашения дождем поверхностных волн в водоемах. Известно, что при наличии волн горизонтальные составляющие скорости частиц на поверхности и на некоторой глубине имеют противоположные направления. Во время дождя значительное количество жидкости, проникающее на глубину, гасит волновую скорость, а восходящие из глубины токи гасят скорость на поверхности. Было бы интересно подробнее разработать этот эффект и построить его математическую модель.

Вихревое облако атомного взрыва. Явление, очень похожее на образование вихревого облака при атомном взрыве, можно наблюдать при взрывах обычных ВВ, например, при подрыве плоской круглой пластины ВВ, расположенной на плотном грунте или на стальной плите. Можно также располагать ВВ в виде сферического слоя или стакана, как показано на рис. 130.

Наземный атомный взрыв отличается от обычного взрыва прежде всего существенно большей концентрацией энергии (кинетической и тепловой) при очень малой массе бросаемого вверх газа. При таких взрывах образование вихревого облака происходит за счет выталкивающей силы, которая появляется из-за того, что масса горячего воздуха, образующаяся при взрыве, легче окружающей среды. Выталкивающая сила играет существенную роль и при дальнейшем движении вихревого облака. Точно так же, как при движении чернильного вихря в воде, действие этой силы приводит к росту радиуса вихревого облака и уменьшению скорости. Явление осложняется тем, что плотность воздуха меняется с высотой. Схема приближенного расчета этого явления имеется в работе .

Вихревая модель турбулентности. Пусть поток жидкости или газа обтекает поверхность, которая представляет собой плоскость с вмятинами, ограниченными сферическими сегментами (рис. 131, а). В гл. V мы показали, что в районе вмятин естественно возникают зоны с постоянной завихренностью.

Предположим теперь, что завихренная зона отделяется от поверхности и начинает двигаться в основном потоке (рис.

131,6). В силу закрученности эта зона, кроме скорости V основного потока, будет иметь еще компоненту скорости, перпендикулярную к V. В результате такая движущаяся вихревая зона вызовет турбулентное перемешивание в слое жидкости, размер которого в десятки раз превышает размеры вмятины.

Это явление, по-видимому, можно использовать для объяснения и расчетов передвижения больших масс воды в океанах, а также передвижения масс воздуха в горных районах при сильных ветрах.

Снижение сопротивления. В начале главы мы говорили о том, что воздушные или водяные массы без оболочек, которые движутся вместе с вихрем, несмотря на плохо обтекаемую форму испытывают значительно меньшее сопротивление, чем такие же массы в оболочках. Мы указали и причину такого снижения сопротивления - оно объясняется непрерывностью поля скоростей.

Возникает естественный вопрос о том, нельзя ли придать обтекаемому телу такую форму (с подвижной границей) и сообщить ему такое движение, чтобы возникающее при этом течение было аналогично течению при движении вихря, и тем самым попытаться уменьшить сопротивление?

Мы приведем здесь принадлежащий Б. А. Луговцову пример, который показывает, что такая постановка вопроса имеет смысл. Рассмотрим симметричное относительно оси х плоское потенциальное течение несжимаемой невязкой жидкости, верхняя половина которого изображена на рис. 132. На бесконечности поток имеет скорость, направленную вдоль оси х, на рис. 132 штриховкой отмечена каверна, в которой поддерживается такое давление, что на ее границе величина скорости постоянна и равна

Нетрудно видеть, что если вместо каверны в поток поместить твердое тело с подвижной границей, скорость которой также равна то наше течение можно рассматривать и как точное решение задачи обтекания этого тела вязкой жидкостью. В самом деле, потенциальное течение удовлетворяет уравнению Навье-Стокса, а условие прилипания на границе тела выполняется в силу того, что скорости жидкости и границы совпадают. Таким образом, благодаря подвижной границе течение останется потенциальным, несмотря на вязкость, след не появится и полная сила, действующая на тело, будет равной нулю.

В принципе такую конструкцию тела с подвижной границей можно осуществить и на практике. Для поддержания описанного движения необходим постоянный подвод энергии, который должен компенсировать диссипацию энергии вследствие вязкости. Ниже мы подсчитаем необходимую для этого мощность.

Характер рассматриваемого течения таков, что его комплексный потенциал должен быть многозначной функцией. Чтобы выделить его однозначную ветвь, мы

сделаем в области течения разрез вдоль отрезка (рис. 132). Ясно, что комплексный потенциал отображает эту область с разрезом на область, изображенную на рис. 133, а (соответствующие точки помечены одинаковыми буквами), на нем указаны также образы линий тока (соответствующие помечены одинаковыми цифрами). Разрыв потенциала на линии не нарушает непрерывности поля скоростей, ибо производная комплексного потенциала остается непрерывной на этой линии.

На рис. 133,б показан образ области течения при отображении это круг радиуса с разрезом по действительной оси от точки до точка разветвления потока В, в которой скорость равна нулю, переходит в центр круга

Итак, в плоскости образ области течения и положение точек вполне определены. В плоскости напротив, можно произвольно задавать размеры прямоугольника Задав их, можно найти по

теореме Римана (гл. И) единственное конформное отображение левой половины области рис. 133, а на нижний полукруг рис. 133 ,б, при котором точки на обоих рисунках соответствуют друг другу. В силу симметрии тогда вся область рис. 133, а отобразится на круг с разрезом рис. 133, б. Если при этом выбрать надлежащим образом положение точки В на рис. 133, а (т. е. длину разреза), то она перейдет в центр круга и отображение определится полностью.

Это отображение удобно выразить через параметр , меняющийся в верхней полуплоскости (рис. 133, в). Конформное отображение этой полуплоскости на круг с разрезом рис. 133, б с нужным соответствием точек выписывается элементарно.

Срочно скажите что такое атмосферный фронт!!! и получил лучший ответ

Ответ от Nick[гуру]
Зона раздела воздущных масс с различными метеопараметрами
Источник: инженер-синоптик

Ответ от Курочкин Кирилл [новичек]
Циклон - это атмосферный вихрь с низким давлением в своем центре, вокруг которого можно провести хотя бы одну замкнутую изобару, кратную 5 гПа.
Антициклон - такой же вихрь, но с высоким давлением в своем центре.
В северном полушарии ветер в циклоне направлен против часовой стрелки, а в антици-клоне - по часовой стрелке. В южном полушарии - наоборот.
В зависимости от географического района, особенностей возникновения и развития различают:
циклоны умеренных широт - фронтальные и нефронтальные (местные или терми-ческие) ;
тропические циклоны (см. следующий пункт) ;
антициклоны умеренных широт - фронтальные и нефронтальные (местные или термические) ;
субтропические антициклоны.
Фронтальные циклоны часто образуют серию циклонов, когда на одном и том же ос-новном фронте возникает, развивается и последовательно перемещается несколько цикло-нов. Фронтальные антициклоны возникают между этими циклонами (промежуточные анти¬циклоны) и в конце серии циклонов (заключительный антициклон) .
Циклоны и антициклоны могут быть одноцентровыми и многоцентровыми.
Циклоны и антициклоны умеренных широт называют просто циклонами и антицикло-нами без упоминания их фронтальной природы. Нефронтальные циклоны и антициклоны чаще называют местными.
Циклон в среднем имеет диаметр около 1000 км (от 200 до 3000 км) , давление в центре до 970 гПа и среднюю скорость перемещения около 20 узлов (до 50 узлов) . Ветер отклоняет¬ся от изобар на 10°-15° к центру. Зоны сильных ветров (штормовые зоны) располагаются обычно в юго-западной и южной частях циклонов. Скорости ветра достигают 20-25 м/с, реже -30м/с.
Антициклон в среднем имеет диаметр около 2000 км (от 500 до 5000 км и более) , дав¬ление в центре до 1030 гПа и среднюю скорость перемещения около 17 узлов (до 45 узлов) . Ветер отклоняется от изобар на 15°-20° от центра. Штормовые зоны чаще отмечаются в се-веро-восточной части антициклона. Скорости ветра достигают 20 м/с, реже - 25 м/с.
По вертикальной протяженности циклоны и антициклоны делят на низкие (вихрь про-слеживается до высот 1,5 км) , средние (до 5 км) , высокие (до 9 км) , стратосферные (когда вихрь выходит в стратосферу) и верхние (когда вихрь прослеживается на высотах, а у под-стилающей поверхности его нет) .


Ответ от P@nter@ [эксперт]
граница атмосферы


Ответ от Ђатошка Каввайнойе [гуру]
Атмосфе́рный фронт (от. др. -греч. ατμός - пар, σφαῖρα - шар и лат. frontis - лоб, передняя сторона) , фронты тропосферные - переходная зона в тропосфере между смежными воздушными массами с разными физическими свойствами.
Атмосферный фронт возникает при сближении и встрече масс холодного и тёплого воздуха в нижних слоях атмосферы или во всей тропосфере, охватывая слой мощностью до нескольких километров, с образованием между ними наклонной поверхности раздела.
Различают
тёплые фронты,
холодные фронты,
фронты окклюзии.
Основными атмосферными фронтами являются:
арктические,
полярные,
тропические.
здесь


Ответ от Ленок [активный]
Атмосферный фронт - переходная зона (ширина несколько десятков км) между воздушными массами с разными физическими свойствами. Различают арктический фронт (между арктическим и среднеширотным воздухом) , полярный (междусреднеширотным и тропическим воздухом) и тропический (между тропическим и экваториальным воздухом).


Ответ от Master1366 [активный]
Атмосферный фронт это граница раздела теплых и холодных масс воздуха, если холодный воздух меняет теплый то фронт называют холодным и наоборот. Как правило любой фронт сопроваждается осадками и перепадом давления, а также облачностью. Где то так.


Введение

1. Образование атмосферных вихрей

1.1 Атмосферные фронты. Циклон и антициклон

2. Изучение атмосферных вихрей в школе

2.1 Изучение атмосферных вихрей на уроках географии

2.2 Изучение атмосферы и атмосферных явлений с 6 класса

Заключение.

Список используемой литературы.

Введение

Атмосферные вихри - тропические циклоны, смерчи, бури, шквалы и ураганы.

Тропические циклоны - это вихри, с низким давлением в центре; они бывают летом и зимой. T ропические циклоны возникают только в низких широтах около экватора. По разрушениям циклоны могут сравнится с землетрясениями или вулкан ами .

Скорость циклонов превышает 120 м/с, при этом возникает мощная облачность, бывают ливни, грозы и град. Ураган может уничтожать целые селения. Количество осадков кажется невероятным в сравнении с интенсивностью дождей при самых сильных циклонах в умеренных широт.

Смерч -разрушительное атмосферное явлене. Это огромный вертикальный вихрь высотой в несколько десятков метров.

Люди пока не могут активно бороться с тропическими циклонами, но важно вовремя подготовиться, будь то на суше или на море. Для этого круглосуточно вахту несут метеорологические спутники, которые оказывают большую помощь в прогнозе путей перемещения тропических циклонов. Они фотографируют вихри, а по фотографии можно довольно точно определить положение центра циклона и проследить его движение. Поэтому в последние время удавалось предупредить население о приближении тайфунов, которые нельзя было обнаружить обычными метеорологическими наблюдениями.

Не смотря на то, что смерч имеет разрушительный эффект в то же время он является эффектным атмосферным явлением. Он сконцентрирован на небольшой площади и весь как бы на глазах. На берегу можно видеть, как из центра мощного облака вытягивается воронка, а навстречу ему с поверхности моря поднимается другая воронка. После смыкания, образуется огромный, перемещающийся столб, который вращается против часовой стрелки. Смерчи

образуются тогда, когда воздух в нижних слоях очень теплый, а в верхних - холодный. Начинается очень интенсивный воздухообмен, который

сопровождается вихрем, имеющим большую скорость - несколько десятков метров в секунду. Диаметр смерча может достичь нескольких сот метров, а скорость 150-200 км/ч. Внутри образуется низкое давление, поэтому смерч втягивает в себя все, что встречает на пути. Известны, например, «рыбные»

дожди, когда смерч из пруда или озера вместе с водой втягивал в себя и находящуюся там рыбу.

Буря - это сильный ветер, при помощи которого на море может начаться большое волнение. Буря может наблюдаться при прохождении циклона, смерча.

Скорость ветра бури превышает 20 м/с и может достигать 100 м/с., а при скорости ветра больше 30 м/с начинаеться ураган , а усиления ветра до скоростей 20-30 м/с называются шквалами .

Если на уроках географии изучают лишь явления атмосферных вихрей, то во время уроков ОБЖ учатся способам защиты от этих явлений, и это очень важно, поскольку зная способы защиты сегодняшние ученики, смогут защитить от атмосферных вихрей не только себя но друзей и близких тоже.

1. Образование атмосферных вихрей.

Борьба тёплых и холодных течений, стремящихся выровнять разность температур между севером и югом, происходит с переменным успехом. То тёплые массы берут перевес и проникают в виде тёплого языка далеко к северу, иногда до Гренландии, Новой Земли и даже до Земли Франца Иосифа; то массы арктического воздуха в виде гигантской «капли» прорываются на юг и, сметая на своём пути тёплый воздух, обрушиваются на Крым и республики Средней Азии. Особенно резко выражена эта борьба зимой, когда разность температур между севером и югом возрастает. На синоптических картах северного полушария всегда можно видеть несколько языков тёплого и холодного воздуха, проникающих на различную глубину к северу и к югу.

Арена, на которой развёртывается борьба воздушных течений, приходится как раз на самые населённые части земного шара - умеренные широты. Эти широты и испытывают на себе капризы погоды.

Самые неспокойные области в нашей атмосфере - это границы воздушных масс. На них часто возникают огромные вихри, которые приносят нам непрерывные изменения погоды. Познакомимся с ними подробнее.

1.1Атмосферные фронты. Циклон и антициклон

В чем причина постоянного перемещения воздушных масс? Как рас­пределяются пояса давления в Евразии? Какие воздушные массы зимой более близки по своим свойствам: морской и континентальный воздух умеренных широт (мВУШ и кВУШ) или континентальный воздух умеренных широт (кВУШ) и континентальный арктический воздух (кАВ)? Почему?

Огром­ные массы воздуха движутся над Землей и несут с собой водяной пар. Одни движутся с суши, дру­гие - с моря. Одни - из теплых районов в холодные, другие - из холодных в теплые. Одни несут много воды, другие - мало. Не­редко потоки встречаются, стал­киваются.

В полосе, разделяющей раз­личные по своим свойствам воз­душные массы, возникают своеоб­разные переходные зоны - атмо­сферные фронты . Ширина этих зон обычно достигает нескольких десятков километров. Здесь на контакте различных воздушных масс при их взаимодействии про­исходит довольно быстрое измене­ние температуры, влажности, давления и других характеристик воздушных масс. Прохождение фронта через какую-либо мест­ность сопровождается облачно­стью, выпадением осадков, сме­ной воздушных масс и связанных с ними типов погод. В тех случа­ях, когда соприкасаются близкие по своим свойствам воздушные массы (зимой АВ и кВУШ - над Восточной Сибирью), атмосфер­ный фронт не возникает и значи­тельного изменения погоды не происходит.

Над территорией России часто располагаются арктический и по­лярный атмосферные фронты. Арктический фронт отделяет арк­тический воздух от воздуха уме­ренных широт. В зоне раздела воздушных масс умеренных ши­рот и тропического воздуха фор­мируется полярный фронт.

Положение атмосферных фрон­тов меняется по сезонам года.

По рисунку (рис. 1 ) можно определите, где расположены арктические и поляр­ные фронты летом.


(рис. 1 )

Вдоль атмосферного фронта происходит соприкосновение теплого воздуха с более холодным. В зависимости от того, какой воз­дух поступает на территорию, вы­тесняя находившийся на ней, фронты разделяются на теплые и холодные.

Теплый фронт образуется, когда теплый воздух движется в сторону холодного, оттесняя его.

При этом теплый воздух, как более легкий, поднимается над холодным плавно, как по лест­нице (рис. 2).


(рис. 2)

При подъеме он постепенно охлаждается, содер­жащиеся в нем водяные пары со­бираются в капли (конденсиру­ется), Небо затягивают тучи, и выпадают осадки. Теплый фронт приносит потепление и затяжные моросящие дожди.

Холодный фронт образуется при перемещении холодного воз­духа в сторону теплого. Холодный воздух тяжелый, поэтому он шквалом втискивается под теп­лый, резко, одним взмахом, под­нимает его и выталкивает вверх (см. рис. 3).

(рис. 3)

Происходит быстрое охлаждение теплого воздуха. Гро­зовые тучи собираются над зем­лей. Выпадают ливневые осадки, нередко сопровождаемые гроза­ми. Часто возникают сильные ветры, шквалы. При прохожде­нии холодного фронта быстро происходит прояснение и насту­пает похолодание . По рисунку 3 можно посмотреть в ка­кой последовательности сменяют друг друга типы облаков при прохо­ждении теплого и холодногофронтов. С атмосферными фронтами связано развитие циклонов, кото­рые приносят на территорию Рос­сии основную массу осадков, пас­мурную и дождливую погоду.

Циклоны и антициклоны.

Циклоны и антициклоны - это крупные атмосферные вихри, пе­реносящие воздушные массы. На картах они выделяются замкну­тыми концентрическими изобара­ми (линиями равного давления).

Циклоны - это вихри с низким давлением в центре. К окраинам давление увеличивается, поэтому в циклоне воздух движется в на­правлении к центру, несколько отклоняясь против часовой стрел­ки. В центральной части воздух поднимается и растекается к окра­инам.

При подъеме воздух охлаждается, происходит конденсация влаги, возникают об­лака, и выпадают осадки. Цикло­ны достигают в поперечнике 2-3 тыс. км и перемещаются обыч­но со скоростью 30-40 км/ч.Так как в умеренных широтах господствует западный перенос воздушных масс, циклоны дви­жутся по территории России с запада на восток. При этом в вос­точную и южную час­ти циклона втягивается воздух из более южных районов, т. е. обычно более теплый, а в северную и западную части - более холод­ный воздух с севера. В связи с быстрой сменой воздушных масс при прохождении циклона резко меняется и погода.

Антициклон имеет самое вы­сокое давление в центре вихря. Отсюда воздух растекается к окра­инам, несколько отклоняясь по ча­совой стрелке. Харак­тер погоды (малооблачной или за­сушливой - в теплый период, ясной, морозной - в холодный) сохраняется в течение всего вре­мени пребывания антициклона, так как растекающиеся из центра антициклона воздушные массы имеют одинаковые свойства. В свя­зи с оттоком воздуха в приземной части в центр антициклона по­стоянно поступает воздух из верхних слоев тропосферы. Опускаясь, этот воздух прогревается и уда­ляется от состояния насыщения. Погода в антициклоне стоит ясная, безоблачная, с большими суточными

колебаниями температур. Основные пути прохождения циклонов связаны с атмосферны­ми фронтами. Зимой они развива­ется над Баренцевым, Карским и

Охотским морями. К районам интенсивных зимних циклонов относится северо-запад Русской равнины, где атлантический воз­дух взаимодействует с континен­тальным воздухом умеренных широт и арктическим.

Летом циклоны наиболее ин­тенсивно развиваются на Дальнем Востоке и в западных районах Русской равнины. Некоторое уси­ление циклонической деятельно­сти наблюдается на севере Си­бири, Антициклональная погода наиболее типична и зимой и летом для юга Русской равнины. Устой­чивые антициклоны характерны зимой для Восточной Сибири.

Синоптические карты, про­гноз погоды. Синоптические кар­ты содержат сведения о погоде большой территории. Составля­ются они на определенный срок на основе наблюдений за погодой, проводимых сетью метеорологи­ческих станций. На синоптиче­ских картах показано давление воздуха, атмосферные фронты, области высокого и низкого дав­ления и направление их движе­ния, области с осадками и харак­тер осадков, скорость и направле­ние ветра, температура воздуха. В настоящее время для состав­ления синоптических карт все шире используются космические снимки. На них хорошо видны зоны облачности, позволяющие судить о положении циклонов и атмосферных фронтов. Синоптические карты - осно­ва для предсказания погоды. Для этой цели обычно сопоставляют карты, составленные на несколь­ко сроков, и устанавливают изме­нения в положении фронтов, сме­щении циклонов и антициклонов, определяют наиболее вероятное направление их развития в бли­жайшее время. По этим данным составляют карту прогноза пого­ды то есть синопти­ческую карту на предстоящий период (на следующий срок на­блюдений, на сутки, двое). Мел­комасштабные карты дают про­гноз для большого района. Осо­бенно важен прогноз погоды для авиации. В конкретной местности прогноз можно уточнить на осно­ве использования местных при­знаков погоды.

1.2 Приближение и прохождение циклона

Первые признаки приближения циклона появляются на небе. Ещё накануне при восходе и заходе солнца небо окрашивается в яркий красно-оранжевый цвет. Постепенно, по мере приближения циклона, оно становится медно-красным, приобретает металлический оттенок. На горизонте появляется зловещая тёмная полоса. Замирает ветер. В душном жарком воздухе наступает поразительная тишина. Осталось ещё около суток до того момента, как налетит

первый бешеный порыв ветра. Морские птицы поспешно собираются в стаи и улетают подальше от моря. Над морем они неминуемо погибнут. Резкими криками, перелетая с места на место, выражает своё беспокойство пернатый мир. Звери забиваются в норы.

Но из всех предвестников бури самым достоверным является барометр. Уже за 24 часа, а иногда и за 48 часов до начала бури, давление воздуха начинает падать.

Чем быстрее «падает» барометр, тем скорее и тем сильнее будет буря. Барометр перестаёт падать только тогда, когда он находится близко от центра циклона. Теперь барометр начинает колебаться без всякого порядка, то повышаясь, то понижаясь, пока не пройдёт центр циклона.

Красные или чёрные клочки разорванных облаков несутся по небу. Со страшной быстротой надвигается огромная чёрная туча; она закрывает всё небо. Ежеминутно налетают резкие, как удар, порывы воющего ветра. Гремит, не переставая, гром; ослепительные молнии пронизывают наступивший мрак. В грохоте и шуме налетевшего урагана нет возможности услышать друг друга. Когда проходит центр урагана, шум начинает походить на артиллерийские залпы.

Конечно, и тропический ураган разрушает далеко не всё на своём пути; он встречает много непреодолимых препятствий. Но сколько разрушений несёт с собой такой циклон. Все непрочные, лёгкие здания южных стран разрушаются подчас до основания и уносятся ветром. Вода рек, гонимая ветром, течёт вспять. Отдельные деревья вырываются с корнем и волокутся по земле на далёкие расстояния. Тучами несутся в воздухе ветки и листья деревьев. Вековые леса гнутся, как тростник. Даже трава нередко сметается ураганом с земли, как сор. Больше всего тропический циклон свирепствует на морских побережьях. Здесь буря проносится, не встречая больших препятствий.

двигаясь из тёплых областей в более холодные, циклоны постепенно расширяются и слабеют.

Отдельные тропические ураганы заходят иногда очень далеко. Так, берегов Европы порой достигают, правда, сильно ослабевшие тропические циклоны Вест-Индии.

Как теперь люди борются с такими грозными явлениями стихии?

Остановить ураган, направить его по другому пути, человек ещё не в силах. Но предупредить о буре, сообщить о ней судам в море и населению на суше - эту задачу в наше время успешно выполняет метеорологическая служба. Такая служба ежедневно составляет особые карты погоды, по которым

успешно предсказывается, где, когда и какой силы ожидается в ближайшие дни буря. Получив такое предупреждение по радио, морские суда или не выходят из порта, или спешат укрыться в ближайшем надёжном порту, либо стараются уйти в сторону от урагана.

Антициклон мы уже знаем, что когда линия фронта между двумя воздушными течениями прогибается, в холодную массу выдавливается тёплый язык, и таким образом зарождается циклон. Но линия фронта может прогибаться и в сторону тёплого воздуха. В этом случае возникает вихрь с совсем другими свойствами, чем циклон. Называется он антициклоном. Это уже не котловина, а воздушная гора.

Давление в центре такого вихря выше, чем по краям, и воздух растекается от центра к окраинам вихря. На его место опускается воздух из более высоких слоев. Опускаясь, он сжимается, нагревается, и облачность в нём постепенно рассеивается. Поэтому и погода в антициклоне обычно бывает малооблачная и сухая; на равнинах она жаркая летом и холодная зимой. Только на окраинах антициклона могут возникать туманы и низкие слоистые облака. Так как в антициклоне нет такой большой разницы в давлениях, как в циклоне, то и ветры здесь гораздо слабее. Движутся они по часовой стрелке (рис. 4).

рис.4

По мере развития вихря верхние слои его прогреваются. Особенно это заметно, когда холодный язык отрезается и вихрь перестаёт, «питаться» холодом или когда антициклон застаивается на одном месте. Тогда погода в нём становится более устойчивой.

Вообще антициклоны - более спокойные вихри, чем циклоны. Движутся они медленнее, около 500 километров в сутки; часто останавливаются и неделями стоят в одном районе, а потом снова продолжают свой путь. Размеры их огромны. Антициклон нередко, особенно зимой, охватывает всю Европу и часть Азии. Но в отдельных сериях циклонов могут возникать и маленькие, подвижные и недолговечные антициклоны.

Приходят к нам эти вихри обыкновенно с северо-запада, реже с запада. На картах погоды центры антициклонов обозначаются буквой В (рис. 4).

На нашей карте можем найти антициклон и посмотреть, как располагаются вокруг его центра изобары.

Таковы атмосферные вихри. Каждый день они проходят над нашей страной. Их можно найти на любой карте погоды.

2. Изучение атмосферных вихрей в школе

В школьной программе про атмосферные вихри и воздушные массы изучают на уроках географии.

На уроках изучают ц иркуляци ю воздушных масс летом и зимой , т рансформаци ю воздушных масс , а при исследовании атмосферных вихрей изучают циклоны и антициклоны , классификацию фронтов по особенностям перемещения и др.

2.1 Изучение атмосферных вихрей на уроках географии

Примерный план проведения урока на тему << Воздушные массы и их типы. Циркуляция воздушных масс >> и << Атмосферные фронты. Атмосферные вихри: циклоны и антициклоны >>.

Воздушные массы и их типы. Циркуляция воздушных масс

Цель: ознакомить с различными типами воздушных масс, районами их формирования, типами погоды, определяемыми ими.

Оборудование: климатические карты России и мира, атласы, трафареты с контурами России.

(Работа с контурными картами.)

1. Определите типы воздушных масс, господствующих над территорией нашей страны.

2. Выявите основные свойства воздушных масс (температура, влажность, направление движения).

3. Установите районы действия воздушных масс и возможное влияние на климат.

(Результаты работы могут быть занесены в таблицу.)

Воз

душная масса

Район формиро­вания

Основные свойства

Районы действия

Проявле ние трансформа­ции

Влия­ние на кли­мат

Темпера

тура

влаж­ность

Комментарии

1. Следует обратить внимание учащихся на трансформацию воздушных масс при продвижении над той или иной тер­риторией.

2. При проверке работы учащихся необходимо подчеркнуть, что в зависимости от географической широты образуют­ся арктические, умеренные или тропические воздушные массы, а в зависимости от подстилающей поверхности они могут быть континентальными или морскими.

Крупные массы тропосферы, отличающиеся своими свойст­вами (температурой, влажностью, прозрачностью), называются воздушными массами.

Над Россией перемещаются три типа воздушных масс: аркти­ческие (АВМ), умеренные (УВМ), тропические (ТВМ).

АВМ формируются над Северным Ледовитым океаном (хо­лодные, сухие).

УВМ формируются в умеренных широтах. Над сушей - кон­тинентальные (КВУШ): сухие, теплые летом и холодные зимой. Над океаном - морские (МКВУШ): влажные.

Господствуют в нашей стране умеренные воздушные массы, т. к. Россия расположена большей частью в умеренных широтах.

- Как свойства воздушных масс зависят от подстилающей по­верхности? (Воздушные массы, формирующиеся над морской поверхностью, - морские, влажные, над сушей - континен­тальные, сухие.)

- Движутся ли воздушные массы? (Да.)

Приведите доказательства их движения. (Смена погоды.)

- Что заставляет их передвигаться? (Разница в давлении.)

- Районы с разным давлением одинаковы в течение всего года? (Нет.)

Рассмотрим движение воздушных масс в течение всего года.

Если движение масс зависит от разницы в давлении, значит, на этой схеме сначала следует изобразить районы с высоким и низ ким давлением. Летом районы с высоким давлением находятся над океанами Тихим и Северным Ледовитым.

Лето


- Какие воздушные массы образуются в этих районах? Се­верном Ледовитом - континентальные арктические воздуш­ные массы (КАВ).)

- Какую погоду они приносят? (Они приносят холодную и яс­ную погоду.)

Если эта воздушная масса проходит над материком, то она нагревается и трансформируется в континентальную умеренную воздушную массу (КВУШ). Которая уже отличается свойствами от КАВ (теплая и сухая). Затем КВУШ превращается в КТВ (жар­кую и сухую, приносящую суховеи и засуху).

Трансформация воздушных масс - это изменение свойств воздушных масс тропосферы при перемещении в другие широ­ты и на другую подстилающую поверхность (например, с моря на сушу или с суши на море). Воздушная масса при этом нагре­вается или охлаждается, в ней увеличивается или уменьшается содержание водяного пара и пыли, меняется характер облачности и т. д. В условиях кардинального изменения свойств воздушной

массы ее относят к другому географическому типу. Например, массы холодного арктического воздуха, проникая летом на юг России, сильно прогреваются, иссушаются и запыляются, приоб­ретая свойства континентального тропического воздуха, нередко вызывающего засухи.

Со стороны Тихого океана приходит морская умеренная мас­са (МУВ), она, как и воздушная масса с Атлантического океа­на, приносит летом относительно прохладную погоду и осадки.

Зима


(На этой схеме учащиеся также отмечают районы с высоким давлением (там, где имеются районы с низкой температурой).)

В районе Северного Ледовитого океана и в Сибири формиру­ются области с высоким давлением. Оттуда на территорию России направляются холодные и сухие воздушные массы. Со стороны Сибири идут континентальные умеренные массы, приносящие морозную ясную погоду. Морские воздушные массы зимой при­ходят с Атлантического океана, который в это время теплее, чем материк. Следовательно, эта воздушная масса приносит осадки в виде снега, возможны оттепели, снегопады.

Ответить на вопрос: «Как вы объясните тип погоды сегодня? Откуда он пришел, по каким признакам вы это определили?»

Атмосферные фронты. Атмосферные вихри: циклоны и антициклоны

Цели: сформировать представление об атмосферных вихрях, фронтах; показать связь между сменой погоды и процессами в атмосфере; познакомить с причинами образования циклонов, антициклонов.

Оборудование: карты России (физическая, климатическая), демонстрационные таблицы «Атмосферные фронты» и «Атмо­сферные вихри», карточки с баллами.

1. Фронтальный опрос

- Что такое воздушные массы? (Крупные объемы воздуха, от­личающиеся по своим свойствам: температуре, влажности и прозрачности.)

- Воздушные массы делятся на типы. Назовите их, чем они отличаются? (Примерный ответ. Над Арктикой формирует­ся арктический воздух - всегда холодный и сухой, прозрач­ный, т. к в Арктике нет пыли. Над большей частью России в умеренных широтах формируется умеренная воздушная масса - зимой холодная, а летом теплая. В Россию летом приходят тропические воздушные массы, которые форми­руются над пустынями Средней Азии и приносят жаркую и сухую погоду с температурой воздуха до 40 °С.)

- Что такое трансформация воздушных масс? (Примерный ответ. Изменение свойств воздушных масс при их пере­движении над территорией России. Например, морской умеренный воздух, приходящий с Атлантического океана, теряет влагу, летом прогревается и становится континен­тальным - теплым и сухим. Зимой морской умеренный воздух теряет влагу, но охлаждается и становится сухим и холодным.)

- Какой океан и почему оказывает большее влияние на кли­мат России? (Примерный ответ. Атлантический. Во-первых, большая часть России

находится в господствующем запад­ном переносе ветров, во-вторых, препятствий для проник­новения западных ветров с Атлантики фактически нет, т. к. на западе России - равнины. Низкие Уральские горы пре­пятствием не являются.)

2. Тест

1.Общее количество радиации, достигающей поверхности Земли, называется:

а) солнечной радиацией;

б) радиационным балансом;

в) суммарной радиацией.

2.Самый большой показатель отраженной радиации имеет:

а) песок; в) чернозем;

б) лес; г) снег.

3.Над Россией зимой перемещаются:

а) арктические воздушные массы;

б) умеренные воздушные массы;

в) тропические воздушные массы;

г) экваториальные воздушные массы.

4.Роль западного переноса воздушных масс усиливается на большей части России:

а) летом; в) осенью.

б) зимой;

5.Самый большой показатель суммарной радиации в России имеет:

а) юг Сибири; в) юг Дальнего Востока.

б) Северный Кавказ;

6.Разница между суммарной радиацией и отраженной радиа­цией и тепловым излучением называется:

а) поглощенной радиацией;

б)радиационным балансом.

7.При движении к экватору величина суммарной радиации:

а) уменьшается; в) не изменяется.

б) увеличивается;

Ответы: 1 - в; 3 - г; 3 - а, б; 4 - а; 5 - б; 6 - б; 7 - б.

3. Работа по карточкам и

Определите, какой тип погоды описан.

1.На рассвете мороз ниже 35 °С, а снег едва виден сквозь туман. Скрип слышен на несколько километра. Дым из труб вертикально поднимается вверх. Солнце красное как раскаленный ме­тал. Днем сверкает и солнце и снег. Туман уже растаял. Небо голубое, пронизано светом, если по­смотреть вверх, то такое впечатление как будто лето. А на дворе стужа, сильный мороз, воздух сух, ветра нет.

Мороз становится крепче. По тайге слышен гул от звуков растрес­кивающихся деревьев. В Якутске средняя температура января -43 °С, а с декабря по март выпадает в среднем 18 мм осадков. (Континентальный умеренный.)

2.Лето 1915 г. было очень ненастное. Шли все время дожди с боль­шим постоянством. Однажды два дня подряд шел очень сильный ливень. Он не позволял людям выходить из домов. Опасаясь, что лодки унесет водой, вытащили их подальше на берег. В течение одного дня несколько раз

опрокидывали их и выливали воду. К концу второго дня вдруг сверху вода пришла валом и сразу затопила все берега. (Муссонный умеренный.)

III . Изучение нового материала

Комментарии. Учитель предлагает прослушать лекцию, по ходу которой учащиеся дают определение терминов, заполняют табли­цы, делают рисунки-схемы в тетради. Затем учитель с помощью консультантов проверяет работу. Каждый ученик получает по три карточки с указанием баллов. Если в течение

урока ученик отдал карточку-балл консультанту, значит, ему требуется еще работа с учителем или консультантом.

Вы уже знаете, что на территории нашей страны движутся воздушные массы трех видов: арктические, умеренные и тропи­ческие. Они достаточно сильно отличаются друг от друга по глав­ным показателям: температура, влажность, давление и т. д. При сближении воздушных масс, имеющих

различные характери­стики, в зоне между ними увеличивается разница температуры воздуха, влажности, давления, возрастает скорость ветра. Пе­реходные зоны в тропосфере, в которых происходит сближение воздушных масс с различными характеристиками, называются фронтами.

В горизонтальном направлении протяженность фронтов, как и воздушных масс, имеет тысячи километров, по вертика­ли - около 5 км, ширина фронтальной зоны у поверхности Зем­ли - порядка сотни километров, на высотах - несколько сотен километров.

Время существования атмосферных фронтов составляет более двух суток.

Фронты вместе с воздушными массами перемещаются со ско­ростью в среднем 30-50 км/ч, а скорость холодных фронтов не­редко достигает 60-70 км/ч (а иногда 80-90 км/ч).

Классификация фронтов по особенностям перемещения

1.Теплыми называются фронты, перемещающиеся в сторо­ну более холодного воздуха. За теплым фронтом в данный регион приходит теплая воздушная масса.

2.Холодными называются фронты, перемещающиеся в сто­рону более теплой воздушной массы. За холодным фрон­том в данный регион приходит холодная воздушная масса.

IV . Закрепление нового материала

1. Работа с картой

1.Определите, где расположены арктические и полярные фрон­ты над территорией России летом. {Примерный ответ}. Аркти­ческие фронты летом расположены в северной части Барен­цева моря, над северной частью Восточной Сибири и морем Лаптевых и над Чукотским полуостровом. Полярные фронты: первый летом протягивается от побережья Черного моря над Среднерусской возвышенностью к Предуралью, второй рас­положен на юге

Восточной Сибири, третий - над южной ча­стью Дальнего Востока и четвертый - над Японским морем.)

2 . Определите, где расположены арктические фронты зимой . {Зимой арктические фронты сдвигаются к югу, но остается фронт над центральной частью Баренцева моря и над Охот­ским морем и Корякским нагорьем.}

3. Определите, в каком направлении происходит сдвиг фрон­тов зимой.

{Примерный ответ}. Зимой фронты перемещают­ся к югу, т. к. все воздушные массы, ветры, пояса давления сдвигаются к югу вслед за видимым движением

Солнца.

2. Самостоятельная работа

Заполнение таблиц.

Холодный фронт

1. Теплый воздух надвигается на холодный.

2. Теплый легкий воздух подни­мается вверх.

3. Затяжные дожди.

4. Медленное потепление

1. Холодный воздух надвигается на теплый.

2. Выталкивает вверх легкий теп­лый воздух.

3. Ливни, грозы.

4. Быстрое похолодание, ясная погода

Атмосферные фронты

Циклоны и антициклоны

Признаки

Циклон

Антициклон

Что это?

Атмосферные вихри, переносящие воздушные массы

Как показаны на картах?

Концентрические изобары

Атмосфер

ное давление

Вихрь с низким давлени­ем в центре

Высокое давление в цен­тре

Движение воз­духа

От периферии к центру

От центра к окраинам

Явления

Охлаждение воздуха, конденсация, образова­ние облаков, выпадение осадков

Прогревание и иссуше­ние воздуха

Размеры

2-3 тыс. км в поперечнике

Скорость пере

мещения

30-40 км/ч, подвижны

Малоподвижны

Направле

ние движения

С запада на восток

Место рожде­ния

Северная Атлантика, Баренцево море, Охотское море

Зимой - сибирский анти­циклон

Погода

Пасмурная, с осадками

Малооблачная, летом - теплая, зимой - морозная

3. Работа с синоптическими картами (картами погоды)

Благодаря синоптическим картам можно судить о продви­жении циклонов, фронтов, облачности, сделать прогноз на бли­жайшие часы, сутки. Синоптические карты имеют свои услов­ные знаки, по которым можно узнать о погоде в любом районе. Изолиниями, соединяющими точки с одинаковым атмосферным давлением (их называют изобарами), показаны циклоны и ан­тициклоны. В центре концентрических изобар стоит буква Н (низкое давление, циклон) или В (высокое давление, антицик­лон). Изобары указывают и давление воздуха в гектопаскалях (1000 гПа = 750 мм рт. ст.). Стрелками показано направление движения циклона или антициклона.

Учитель показывает, как на синопти­ческой карте отражена различная информация: давление воздуха, атмосферные фронты, антициклоны и циклоны и их давление, области с осадками, характер осадков, скорость и направление ветра, температура воздуха.)

Из предложенных признаков выберите, что характерно для

циклона, антициклона, атмосферного фронта:

1) атмосферный вихрь с высоким давлением в центре;

2) атмосферный вихрь с низким давлением в центре;

3) приносит пасмурную погоду;

4) устойчив, малоподвижен;

5) устанавливается над Восточной Сибирью;

6) зона столкновения теплых и холодных воздушных масс;

7) восходящие потоки воздуха в центре;

8) нисходящее движение воздуха в центре;

9) движение от центра к периферии;

10) движение против часовой стрелки к центру;

11) бывает теплым и холодным.

{Циклон - 2, 3, 1, 10;. антициклон - 1, 4, 5, 8, 9; атмосферный фронт - 3,6, 11.}

Домашнее задание

2.2 Изучение атмосферы и атмосферных явлений с 6 класса

Изучение атмосферы и атмосферных явлений в школе начинается с шестого класса на уроках географии.

С шестого класса ученики, изучая раздел географии << Атмосфера – воздушная оболочка земли>> начинают исследовать состав и строение атмосферы, в частности то, что сила притяжения земли удерживает вокруг себя эту воздушную оболочку и не дает ей рассеяться в космосе, также ученики начинают понимать, что чистый воздух самое главное условие для жизни человека. Начинают различать состав воздуха, получают знания о кислороде и учат, что насколько он важен для человека в чистом виде. Получают знания о слоях атмосферы, и насколько она важна для земного шара, от чего защищает нас.

Продолжая изучение данного раздела школьники понимют то, что у поверхности земли воздух более теплее, чем на высоте и это связано с тем, что солнечные лучи, проходя через атмосферу, почти не нагревают ее, нагревается лишь поверхность земли, а если бы не было атмосферы, то поверхность земли

быстро бы отдавала тепло, полученное от солнца, учитывая это явление, дети представляют то, что нашу землю защищает ее воздушная оболочка, в частности воздух, задерживает часть тепла, уходящего от поверхности земли и сам при этом нагревается. А если подняться повыше, то там слой атмосферы становится тоньше и, следовательно, он не может задерживать больше тепла.

Уже имея представление об атмосфере, дети продолжают исследование и узнают, что есть такое понятие, как средняя суточная температура, и ее находят по очень простому методу – измеряют температуру в течение суток за определенный промежуток времени, затем из собранных показателей находят среднее арифметическое значение.

Теперь школьники, переходя к следующему параграфу раздела, начинают изучать утренний и вечерний холод, а это так, потому что, днем солнце поднимается до максимальной высоты, и в этот момент происходит максимальный нагрев поверхности земли. И в следствии с этим разница между температурами воздуха, в течение суток может меняться, в частности над океанами и морями 1-2 градуса, а над степями и пустынями может достигать до 20 градусов. При этом учитывается угол падения солнечных лучей, рельеф местности, растительность и погода.

Продолжая рассматривать данный параграф, школьники учат что, почему в тропиках теплее, чем на полюсе, а это так, потому что чем дальше от экватора, тем ниже стоит солнце над горизонтом, и следовательно угол падения солнечных лучей на землю меньше, и меньше солнечной энергии приходится на единицу поверхности земли.

Переходя к следующему параграфу, ученики начинают изучать давление и ветер, рассматривать такие вопросы как атмосферное давление, от чего зависит давление воздуха, почему дует ветер и какой он бывает.

Воздух – имеет массу, по подщетам ученных столб воздуха давит на поверхность земли с силой 1,03 кг/см 2 . Атмосферное давление измеряют при помощи барометра, а единица измерения миллиметры ртутного столба.

Нормальным чтитается давление равное 760 мм рт. ст., следовательно если давление выше нормы, называется повышенным, а если ниже – пониженным.

Тут есть интересная закономерность, атмосферное давление находится в равновесии с давлением внутри человеческого организма, поэтому мы не испытываем неудобства, несмотря на то что на нас давит такой объем воздуха.

Теперь рассмотрим то, от чего зависит давление воздуха, и так, с увеличением высоты местности давление уменьшается, а это, потому что меньше столб воздуха давящий на землю, уменьшается и плотность воздуха, поэтому, чем выше от поверхности, тем труднее дышать.

Теплый воздух легче холодного, его плотность меньше, давление на поверхности слабое, и при нагревании теплые массы поднимаются вверх, и обратный процесс происходит, если воздух охлаждается.

Проанализируя выше сказанное, следует, что атмосферное давление тесно связано с температурой воздуха и высотой местности.

Теперь перейдем к следующему вопросу, и узнаем почему дует ветер?

В середине дня песок или камень раскаляется на солнце, а вода еще довольно прохладная - она медленнее нагревается. А вечером или ночью может быть наоборот: песок уже холодный, а вода еще теплая. Это происходит потому, что суша и вода нагреваются и остывают по-разному

Днем солнечные лучи нагревают прибрежную сушу. В это время: суша, здания на ней, а от них и воздух нагреваются быстрее воды, теплый воздух над сушей поднимается вверх, давление над сушей уменьшается, воздух над водой не успева­ет нагреться, давление его пока выше, чем над сушей, воздух из области более вы­сокого давления над водой стре­мится занять место над сушей и начинает перемещаться, выравни­вая давление - с моря на сушу подулветер.

Ночью поверхность земли на­чинает остывать. Суша и воздух над ней остывают быстрее, и дав­ление над сушей становится вы­ше, чем над водой. Вода же осты­вает медленнее, и воздух над ней дольше остается теплым. Он поднимается вверх, и давление над морем умень­шается. Ветер начинает дуть с

суши на море. Такой ветер, меняющий направ­ление два раза в сутки, называется бризом (в переводе с французского - лег­кий ветер).

Теперь ученики уже знают, что ВЕТЕР ВОЗНИКАЕТ ИЗ-ЗА РАЗНИЦЫ В АТМОСФЕРНОМ ДАВЛЕНИИ НА РАЗНЫХ УЧАСТКАХ ПОВЕРХНОСТИ ЗЕМЛИ.

А после этого школьники могут уже исследовать следующий вопрос. Какой бывает ветер? Ветер имеет две главные характеристики: скорость инаправление . Направление ветра определяют по той стороне горизонта, откуда он дует, а скорость ветра - количество метров, проходимое воздухом в секунду (м/с).

Для каждой местности важно знать, какие ветры дуют чаще, ка­кие - реже. Это необходимо для проектировщиков зданий, летчи­ков и даже врачей. Поэтому спе­циалисты строят чертеж, который называют розой ветров. Первоначально розой ветров на­зывали знак в форме звезды, лучи которой указывали на стороны гори­зонта - 4 главные и 8 промежуточ­ных. Верхний луч всегда указывал на север. Роза ветров присутствовала на старинных картах и циферблате ком­паса. Она указывала направление мо­рякам и путешественникам.

Переходя к следующему параграфу ученики начинают исследовать влагу в атмосфере.

Вода присутствует во всех земных оболочках, в том чис­ле и в атмосфере. Она попадает туда,испаряясь с водной и твердой поверхнос­ти земли и даже с поверхности растений. Наряду с азотом, кислородом и другими газами в воздухе всегда содержится водяной пар - вода в газообразном состо­янии. Как и другие газы, он невидим. При охлажде­нии воздуха содержащийся в нем водяной пар превращается в капельки -кон­денсируется . Сконденсированные из водяного пара мелкие частицы воды можно наблюдать в виде облаков высоко в небе или в виде тумана низко над поверх­ностью земли.

При отрицательных температурах капельки замерзают - превра­щаются в снежинки или льдинки. Теперь рассмотрим акой воздух влажный, а какой - сухой? Количество водяного пара, которое может содержаться в воздухе, зависит от его температуры. Например, 1м 3 холодного воздуха при температуре около -10 °С может содержать максимально 2,5г водяного пара. Однако 1м 3 эква­ториального воздуха при температуре +30 °С может вместить до 30г водяного пара. Чемвыше температура воздуха, тем большеводяного пара может в нем со­держаться.

Относительная влажность показывает отношение количества влаги, находящей­ся в воздухе, к тому количеству, кото­рое он может содержать при данной температуре.

Как образуются облака и почему идет дождь?

Что будет, если насыщенный влагой воздух охладится? Часть его превратится в жидкую воду, ведь более холодный воздух спо­собен вместить меньше водяного пара. В жаркий летний день мож­но наблюдать, как на безоблачном с утра небе появляется вначале немного, а затем все больше круп­ных облаков. Это солнечные лучи все сильнее нагревают землю, а от нее нагревается воздух. Нагре­тый воздух поднимается, охлажда­ется, и находящийся в нем водяной пар переходит в жидкое сос­тояние. Вначале это очень мелкие капельки воды (размером в сотые доли миллиметра). Такие капли не выпадают на землю, а «плава­ют» в воздухе. Так образуются облака. По мере того как капель становится все больше, они могут увеличиваться и, наконец, проли­ваться на землю дождем или вы­падать в виде снега или града.

«Пышные» облака, образующи­еся при поднятии воздуха вверх в результате нагревания поверхнос­ти, называюткучевыми. Ливневый дождь идет из мощныхкучево- дождевых облаков. Облака бывают и других видов - низ­кие

слоистые , более высокие и «легкие»перистые . Из слоисто-дождевых облаков выпадают обложные осадки.

Облачность - важная характеристика погоды. Это - доля небосвода, занятая облаками. От облачности зависит, сколько света и тепла не дойдет до поверх­ности земли, сколько выпадет осадков. Облачность ночью препятствует пониже­нию температуры воздуха, а днем ослабляет нагревание земли солнцем.

Теперь рассмотрим вопрос - какие же бывают осадки? Мы знаем, что из облаков выпадают осадки. Осад­ки бывают жидкие (дождь, морось), твердые (снег, град) и смешанные - мок­рый снег (снег с дождем). Важной характеристикой осадков является их интен­сивность, т. е. количество осадков, выпавших за определенный промежуток вре­мени, в миллиметрах. Количество выпавших осадков на земную поверхность определяют с помощью осадкомера. По характеру выпадения различают ливневые, обложные и моросящие осадки.Ливневые осадки интенсивны, непродолжительны, выпадают из кучево-дождевых облаков.Обложные осадки, выпадающие из слоис- то-дождевых облаков, умеренно интенсивны, длительны по времени.Моросящие осадки выпадают из слоистых облаков. Они - мелкокапельные, как бы взвешен­ные в воздухе.

Изучив вышесказанное школьники переходят к рассмотрению вопроса - Какие бывают воздушные массы? В природе почти всегда «все связано со всем», поэтому элементы погоды из­меняются не произвольно, а во взаимосвязи друг с другом. Их устойчивые со­четания характеризуют различные типывоздушных масс . Свойства воздушных масс, во-первых, зависят от географической широты, во-вторых, от характера по­верхности земли. Чем выше широта, тем меньше тепла, тем ниже температура воздуха.

И в завершении школьники узнают, что климат - многолетний режим погоды, характерный для той или иной мест­ности .

Главные факторы климата: географическая широта, близость морей и океанов, направление господствующих ветров, рельеф и высота над уровнем моря, морские течения.

Далнейшее изучение школьниками климатических явлений продолжается на уровне материков отдельно, они рассматривают отдельно какие явления на конкретно каком материке происходят, и изучив по материкам, в старших классах продолжают рассматривать по отдельно взятым странам

Заключение

Атмосфера - воздушная оболочка, окружающая землю и вра­щающаяся вместе с ней. Атмосфера защищает жизнь на плане­те. Она сохраняет солнечное тепло и предохраняет землю от перегрева, вредного излучения, метеоритов. В ней формируется погода.

Воздух атмосферы состоит из смеси газов, в нем всегда при­сутствует водяной пар. Основные газы в воздухе - азот и кис­лород. Главными характеристиками атмосферы являются темпера­тура воздуха, атмосферное давление, влажность воздуха, ветер, облака, осадки. Воздушная оболочка связана с другими оболоч­ками Земли прежде всего через мировой круговорот воды. Основная масса воздуха атмосферы сосредоточена в ее нижнем слое - тропосфере.

Солнечное тепло поступает на шарообразную поверхность зем­ли неодинаково, поэтому на разных широтах формируется разный климат.

Список используемой литературы

1. Теоретические основы методики обучения географии. Под ред. А. Е. Бибик и

Др., М., «Просвещение», 1968 г.

2. География. Природа и люди. 6кл._Алексеев А.И. и др_2010 -192с

3. География. Начальный курс. 6 класс. Герасимова Т.П., Неклюкова

Н.П. (2010, 176с.)

4. География. 7кл. В 2ч. Ч.1._Домогацких, Алексеевский_2012 -280с

5. География. 7кл. В 2ч. Ч.2._Домогацких Е.М_2011 -256с

6. География. 8кл._Домогацких, Алексеевский_2012 -336с Изменение климата. Пособие для педагогов старших классов. Кокорин

Основные закономерности формирования атмосферных вихрей

Приведено собственное, отличное от общепринятого объяснение формирования атмосферных вихрей, в соответствии с которым они образуются океанским волнами Россби. Подъём воды в волнах формирует температуру поверхности океанов в виде отрицательных аномалий, в центре которых вода холоднее, чем на периферии. Эти аномалии воды создают отрицательные аномалии температуры воздуха, которые превращаются в атмосферные вихри. Рассмотрены закономерности их формирования.

В атмосфере нередко формируются образования, в которых воздух, и содержащаяся в нём влага и твёрдые вещества вращаются циклонически в Северном полушарии и антициклонически - в Южном, т.е. против часовой стрелки в первом случае и по её движению - во втором. Это атмосферные вихри, к которым относятся циклоны тропические и средних широт, ураганы, торнадо, тайфуны, тромбо, орканы, вили-вилли, бегвиз, смерчи и т. п.

Природа этих образований во многом общая. Тропические циклоны обычно в диаметре меньше, чем в средних широтах и составляют 100-300 км, но скорости движения воздуха в них большие, достигающие 50-100м/с. Вихри с большими скоростями движения воздуха в районе тропической зоны западной части Атлантического океана около Северной и Южной Америки получили название ураганов, торнадо, аналогичные около Европы – тромбо, около юго-западной части Тихого океана – тайфунов, около Филиппин -бегвиза, около берегов Австралии – вили-вилли, в Индийском океане – орканов.

Тропические циклоны образуются в экваториальной части океанов на широтах 5-20° и распространяются в западном направлении вплоть до западных границ океанов, а затем в северном полушарии движутся на север, в южном – на юг. При движении на север или юг они часто усиливаются и называются тайфунами, торнадо и т.д. Выходя на материк, они довольно быстро разрушаются, но успевают нанести значительный ущерб природе и людям.

Рис. 1. Торнадо. Образования формы, изображённой на рисунке часто называют “воронкой торнадо”. Образование от верхней части торнадо в виде облака до поверхности океана называют трубой или хоботом торнадо.

Подобные вращательные движения воздуха меньших размеров над морем или океаном получили название смерчей.

Принятая гипотеза формирования циклонических образований. Считается, что возникновение циклонов и пополнение их энергией происходит в результате подъёма больших масс тёплого воздуха и скрытой теплоты конденсации. Считается, что в районах образования тропических циклонов вода теплее атмосферы. В этом случае воздух нагревается от океана и поднимается вверх. В результате влага конденсируется и выпадает в виде дождей, давление в центре циклона падает, что и приводит к возникновению вращательных движений воздуха, влаги, твердых веществ, заключенных в циклоне [Грей, 1985, Иванов, 1985, Наливкин, 1969, Gray, 1975]. Считается, что в энергетическом балансе тропических циклонов важную роль играет скрытая теплота испарения. При этом температура океана в области зарождения циклона должна быть не меньше 26° C.

Эта общепринятая гипотеза формирования циклонов возникла без анализа натурной информации, путём логических умозаключений и представлений её авторов о физике развития подобных процессов. Естественно предположить: если воздух в образовании поднимается, что происходит в циклонах, то он должен быть легче, чем воздух на его периферии.

Рис. 2. Вид сверху на облако торнадо. Частично оно расположено над п-ом Флорида. http://www.oceanology.ru/wp-content/uploads/2009/08/bondarenko-pic3.jpg

Так и считается: лёгкий тёплый воздух поднимается, влага конденсируется, давление падает, возникают вращательные движения циклона.

Некоторые исследователи видят слабые стороны этой, хотя и общепринятой, гипотезы. Так, они считают, что локальные перепады температуры и давления в тропиках не настолько велики, чтобы только эти факторы могли сыграть решающую роль в возникновении циклона, т.е. столь значительно ускорить воздушные потоки [Юсупалиев, и др., 2001]. До сих пор остаётся неясным, какие физические процессы протекают на начальных стадиях развития тропического циклона, каким образом усиливается исходное возмущение, как возникает система крупномасштабной вертикальной циркуляции, подводящая энергию в динамическую систему циклона [Моисеев и др., 1983]. Приверженцы этой гипотезы никак не объясняют закономерностей потоков тепла из океана в атмосферу, а просто предполагают их наличие.

Мы же видим очевидный следующий недостаток этой гипотезы. Так, чтобы воздух нагревался от океана, недостаточно, чтобы океан был теплее воздуха. Необходим поток тепла с глубины к поверхности океана, а следовательно, и подъём воды. Вместе с тем, в тропической зоне океана вода на глубине всегда холоднее, чем у поверхности, и такого тёплого потока не существуeт. В принятой гипотезе, как отмечалось, циклон формируется при температуре воды более 26°C. Однако в реальности мы наблюдаем иное. Так в экваториальной зоне Тихого океана, где активно образуются тропические циклоны, средняя температура воды ~ 25°C. При этом циклоны чаще образуются во время Ла-Ниньа, когда температура поверхности океана понижается до 20°C и редко во время Эль-Ниньо, когда температура поверхности океана повышается до 30°C. Поэтому можно считать, что принятая гипотеза формирования циклонов не может реализоваться, во всяком случае, в тропических условиях.

Мы провели анализ этих явлений и предлагаем иную гипотезу формирования и развития циклонических образований, на наш взгляд, правильнее объясняющую их природу. Активную роль в формировании и пополнении энергией вихревых образований играют океанические волны Россби.

Волны Россби Мирового океана. Они составляют часть взаимосвязанного поля свободных, прогрессивных, распространяющихся в пространстве волн Мирового океана, обладают свойством в открытой части океана распространяться в западном направлении. Волны Россби присутствуют во всём Мировом океане, но в экваториальной зоне они большие. Движение частиц воды в волнах и волновой перенос (Стоксов, Лагранжев) это, фактически, волновые течения. Их скорости (эквивалент энергии) изменяются во времени и пространстве. По итогам исследований [Бондаренко, 2008] скорость течения равна амплитуде колебания скорости течения волн, фактически – максимальной скорости в волне. Поэтому наибольшие скорости волновых течений наблюдаются в областях сильных крупномасштабных течений: западных пограничных, экваториальных и циркумполярном течении (рис.3а, б).

Рис. 3а, б. Векторы средних по ансамблю дрифтерных наблюдений течений Северного (а) и Южного (б) полушарий Атлантического океана. Течения: 1 – Гольфстрим, 2 – Гвианское, 3 – Бразильское, 4 – Лабрадорское, 5- Фольклендское, 6 – Канарское, 7 –Бенгельское.

В соответствии с исследованиями [Бондаренко, 2008] линии токов течений волн Россби в узкой приэкваториальной зоне (2° – 3° от Экватора на север и юг) и её окружении схематически можно представить в виде линий токов диполя, (рис. 5а, б). Напомним, что линии токов указывают на мгновенное направление векторов течений, или, что одно и то же, направление силы, создающей течения, скорость которых пропорциональна плотности линий токов.

Рис. 4. Пути всех тропических циклонов за 1985-2005 гг. Цвет указывает их силу по шкале Саффира-Симпсона .

Видно, что у поверхности океана в экваториальной зоне плотность линий токов гораздо больше, чем за её пределами, следовательно, больше и скорости течений. Вертикальные скорости течений в волнах невелики, они составляют приблизительно тысячную часть горизонтальной скорости течения. Если учесть, что горизонтальная скорость на Экваторе достигает 1 м/с, то вертикальная равна приблизительно 1 мм/с. При этом, если длина волны равна 1 тыс. км, то область подъёма и опускания волны составит 500 км.

Рис. 5 а,б. Линии токов волн Россби в узкой приэкваториальной зоне (2° – 3° от Экватора на север и юг) в виде эллипсов со стрелками (вектор волновых течений) и её окружение. Сверху – вид по вертикальному сечению вдоль Экватора (А), снизу – вид сверху на течение. Голубым и синим цветом выделена область подъёма на поверхность холодных глубинных вод, желтым – область опускания на глубину теплых поверхностных вод [Бондаренко, Жмур, 2007].

Последовательность волн как во времени, так и в пространстве, представляет собой непрерывный ряд сформированных в модуляции (группы, цуги, биения) малых - больших - малых и т.д. волн. Параметры волн Россби экваториальной зоны Тихого океана определены по измерениям течений, образец которых представлен на рис. 6 а и температурным полям, образец которых представлен на рис. 7а, б, в. Период волн легко определяется графически по рис. 6 а, он приблизительно равен 17-19 суткам.

При неизменной фазе в модуляциях укладывается примерно 18 волн, что по времени соответствует одному году. На рис. 6а такие модуляции чётко выражены, их три: в 1995, 1996 и 1998 гг. В экваториальной зоне Тихого океана укладывается десять волн, т.е. почти половина модуляции. Порой модуляции имеют стройный квазигармонический характер. Это состояние можно рассматривать как типичное для экваториальной зоны Тихого океана. Когда-то они выражены нечетко, а иногда волны разрушаются и превращаются в образования с чередованием больших и малых волн или волны в целом становятся малыми. Такое наблюдалось, например, с начала 1997 г. и до средины 1998 г. во время сильного Эль-Ниньо, температура воды достигала 30°C. После этого наступило сильное Ла-Ниньа: температура воды опускалась до 20°С, временами до 18°C.

Рис. 6 а,б. Меридиональная составляющая скорости течения, V (а) и температура воды (б) в пункте на Экваторе (140° з.д.) на горизонте 10 м за период 1995-1998 гг. В течениях заметно выделяются колебания скорости течений с периодом порядка 17 – 19 суток, образованные волнами Россби. В измерениях прослеживаются и колебания температуры с аналогичным периодом.

Волны Россби создают колебания температуры поверхности воды (механизм описан выше). Большим волнам, наблюдаемых во время Ла-Ниньа соответствуют большие колебания температуры воды, а малым, наблюдаемых во время Эль-Ниньо – малые. Во время Ла-Ниньа волны формируют заметные температурные аномалии. На рис. 7в выделяются зоны подъёма холодной воды (синий и голубой цвет) и в промежутках между ними зоны опускания тёплой воды (светло синий и белый цвет). Во время Эль-Ниньо эти аномалии небольшие и не заметны (рис. 7б).

Рис. 7 а,б,в. Средняя температура воды (°C) экваториальной области Тихого океана на глубине 15 м. за период 01.01.1993 - 31.12.2009 (а) и аномалии температуры во время Эль-Ниньо декабрь 1997 г. (б) и Ла-Ниньа декабрь 1998 г. (в) .

Формирование атмосферных вихрей (гипотеза автора). Тропические циклоны и торнадо, цунами и т.д. движутся по экваториальным и зонам западных пограничных течений, в которых волны Россби имеют наибольшие вертикальные скорости движения воды (рис.3, 4). Как отмечалось, в этих волнах подъём глубинной воды на поверхность океана в тропических и субтропических зонах приводит к созданию на поверхности океана значительных отрицательных аномалий воды овальной формы, с температурой в центре ниже температуры вод, их окружающих, “температурных пятен” (рис. 7в). В экваториальной зоне Тихого океана аномалии температуры имеют такие параметры: ~ 2 – 3 °C, диаметр ~ 500 км.

Сам факт движения тропических циклонов и торнадо по зонам экваториальных и западных пограничных течений, а также анализ развития таких процессов, как апвеллинг – даунвеллинг, Эль-Ниньо – Ла-Ниньf, пассатов и навёл нас на мысль о том, что атмосферные вихри как-то должны быть связаны физически с активностью волн Россби, а точнее должны ими порождаться, чему впоследствии мы нашли объяснение.

Аномалии холодной воды охлаждают атмосферный воздух, создавая отрицательные аномалии овальной формы, близкой к круговой, холодного воздуха в центре и более тёплого на периферии. В результате и давление внутри аномалии оказывается ниже, чем на её периферии. Как следствие этого возникают усилия, обусловленные градиентом давления, которые движут массы воздуха и содержащейся в нём влаги и твёрдых веществ в центр аномалии – F д. На массы воздуха действует сила Кориолиса - F k , которая отклоняет их вправо в Северном полушарии и влево в Южном. Таким образом, массы будут двигаться в цент аномалии по спирали. Чтобы циклоническое движение возникло, сила Кориолиса должна быть отлична от нуля. Так как F k =2mw u Sinf , где m – масса тела, w – угловая частота вращения Земли, f - широта места, u - модуль скорости движения тела (воздуха, влаги, твёрдых веществ). На экваторе F k = 0, поэтому циклонические образования там не возникают. В связи с движением масс по окружности образуется центробежная сила - F ц, стремящаяся оттолкнуть массы от центра аномалии. В целом на массы будет действовать сила стремящаяся сместить их по радиусу - F r = F д - F ц. и сила Кориолиса. Скорость вращения масс воздуха, влаги и твёрдых веществ в образовании и подачи их в центр циклона будет зависеть от градиента силы F r . Чаще всего в аномалии F д > F ц. Сила F ц достигает существенной величины при больших угловых скоростях вращения масс. Такое распределение усилий приводит к тому, что воздух с содержащимися в нём влагой и твердыми частицами устремляется в центр аномалии и там выталкивается вверх. Именно выталкивается, но не поднимается, как это считается в принятых гипотезах образования циклонов. При этом поток тепла направлен из атмосферы, а не из океана, как в принятых гипотезах. Подъём воздуха вызывает конденсацию влаги и, соответственно, падение давления в центре аномалии, образование облачности над ней, выпадение осадков. Это приводит к уменьшению температуры воздуха аномалии и ещё большему падению давления в её центре. Возникает своего рода связь процессов, взаимно усиливающих друг друга: падение давления в центре аномалии увеличивает подачу в нее воздуха и, соответственно, его подъём, что в свою очередь приводит к ещё большему падению давления и, соответственно, увеличению поступления масс воздуха, влаги и твёрдых частиц в аномалию. В свою очередь это приводит к сильному увеличению скоростей движения воздуха (ветра) в аномалии, образуя циклон.

Итак, мы имеем дело со связью процессов, взаимно усиливающих друг друга. Если процесс протекает без усиления, в вынужденном режиме, то, как правило, скорость ветра небольшая - 5-10 м/с, но в отдельных случаях может достигать и 25 м/с. Так, скорость ветров – пассатов составляет 5 – 10 м/с при различиях температуры поверхностных вод океана 3-4°C на 300 – 500 км. В прибрежных апвеллингах Каспийского моря и в открытой части Черного моря ветры могут достигать 25 м/с при различиях температуры воды ~ 15°C на 50 – 100 км. При “работе” связи процессов, взаимно усиливающих друг друга в тропических циклонах, торнадо, смерчах скорость ветра в них может достигать существенных величин - свыше 100-200 м/с.

Подпитка циклона энергией. Мы уже отмечали, что волны Россби вдоль Экватора распространяются на запад. Они формируют на поверхности океана отрицательные по температуре аномалии воды в диаметре ~ 500км, которые поддерживаются отрицательным потоком тепла и массы воды, поступающей с глубины океана. Расстояние между центрами аномалий равно длине волны, ~ 1000 км. Когда циклон находится над аномалией, то он подпитывается энергией. Но когда циклон оказывается между аномалиями, он практически не подпитывается энергией, поскольку в этом случае отсутствуют вертикальные отрицательные потоки тепла. Эту зону он проскакивает по инерции, возможно, с небольшой потерей энергии. Далее в очередной аномалии он получает дополнительную порцию энергии, и так продолжается на всём пути движения циклона, переходящего нередко в торнадо. Разумеется, могут возникать условия, когда циклон не встретит аномалий или они будут малыми, и он может со временем разрушиться.

Формирование торнадо. После того, как тропический циклон достигнет западных границ океана, он движется на север. За счёт увеличения Кориолисовой силы увеличиваются угловая и линейная скорости движения воздуха в циклоне, давление в нём падает. Перепады давления внутри и вне циклонического образования достигают величин более 300 мб, в то время как в циклонах средних широт эта величина составляет ~ 30 мб. Скорости ветра превышают 100 м/с. Область подъёма воздуха и содержащихся в нём твёрдых частиц и влаги сужается. Она получила название хобота или трубы вихревого образования. Массы воздуха, влаги и твёрдых веществ поступают с периферии циклонического образования в его центр, в трубу. Такие образования с трубой получили название торнадо, тромбов, тайфунов, смерчей (см. рис. 1, 2).

При больших угловых скоростях вращения воздуха в центре торнадо возникают условия: F д ~ F ц.. Сила F д стаскивает массы воздуха, влаги и твёрдых частиц с периферии торнадо на стенки трубы, сила F ц - с внутренней области трубы на ее стенки. В этих условиях влага и твердые вещества в трубе отсутствуют и воздух прозрачен. Такое состояние торнадо, цунами и др. получило название “глаз бури”. На стенках трубы результирующая сила, действующая на частицы, практически равна нулю, а внутри трубы она мала. Также малы угловая и линейная скорости вращения воздуха в центре торнадо. Это и объясняет отсутствие ветра внутри трубы. Но такое состояние торнадо, с “глазом бури” наблюдается не во всех случаях, а только тогда, когда угловая скорость вращения веществ достигает значительной величины, т.е. в сильных торнадо.

Торнадо, как и тропический циклон, на всём пути следования над океаном подпитывается энергией температурных аномалий воды, создаваемых волнами Россби. На суше такой механизм подкачки энергии отсутствует и поэтому торнадо относительно быстро разрушается.

Ясно, что для прогноза состояния торнадо по пути его следования над океаном необходимо знать термодинамическое состояние поверхностных и глубинных вод. Такую информацию дают съёмки из космоса.

Тропические циклоны и торнадо обычно образуются летом и осенью, в это время в Тихом океане формируется Ла-Ниньа. Почему? В экваториальной зоне океанов именно в это время волны Россби достигают наибольшей амплитуды и создают аномалии температуры значительной величины, энергией которых и питается циклон [Бондаренко, 2006]. Нам не известно, как ведут себя амплитуды волн Россби в субтропической части океанов, поэтому нельзя утверждать, что аналогичное происходит и там. Но хорошо известно, что глубокие отрицательные аномалии в этой зоне появляются летом, когда поверхностные воды нагреты сильнее, нежели зимой. В этих условиях возникают температурные аномалии воды и воздуха с большими перепадами температуры, чем и объясняется образование сильных торнадо в основном летом и осенью.

Циклоны средних широт. Это образования без трубы. В средних широтах циклон, как правило, не переходит в торнадо, поскольку выполняются условия Fr ~ Fk, т.е. движение масс геострофическое.

Рис. 8. Поле температуры поверхностных вод Чёрного моря на время 19 ч. 29 сентября 2005г.

В этих условиях вектор скорости движения масс воздуха, влаги и твёрдых частиц направлен по окружности циклона и все эти массы только слабо поступают в его центр. Поэтому циклон не сжимается и не превращается в торнадо. Нам удалось проследить образование циклона над Чёрным морем. Волны Россби нередко создают отрицательные темпера-турные аномалии поверхностных вод в центральных районах западной и восточной его частях. Они и образуют над морем циклоны, иногда с большой скоростью ветра. Нередко температура в аномалиях достигает ~ 10 – 15 °C, в то время, как над остальным морем температура воды ~ 230C. На рис.8 приведено распределение температуры воды Чёрного моря. На фоне относительно тёплого моря с температурой поверхностных вод до ~ 23°C в западной его части выделяется аномалия воды до ~ 10°C. Различия весьма существенны, что и сформировало циклон (рис. 9). Этот пример свидетельствует о возможности реализации предложенной нами гипотезы формирования циклонических образований.

Рис. 9. Схема поля атмосферного давления над Чёрным морем и около его, соответствующее времени: 19ч. 29 сентября 2005г. Давление в мб. В западной части моря находится циклон. Средняя скорость ветра в районе циклона равна 7 м/с и направлена циклонически вдоль изобар.

Нередко к Чёрному морю со стороны Средиземного приходит циклон, который значительно усиливается над Чёрным морем. Так, скорее всего, в ноябре 1854г. образовалась знаменитая Балаклавская буря, потопившая Английскиё флот. Аналогичные изображённым на рис.8 температурные аномалии воды образуются и в других замкнутых или полузамкнутых морях. Так, торнадо движущиеся в сторону США, часто значительно усиливаются при прохождении над Карибским морем или Мексиканским заливом. Для обоснования наших выводов приведём дословно выдержку из сайта Интернета “Атмосферные процессы в Карибском море”: “Ресурс представляет динамическое изображение тропического урагана Dean (торнадо), одного из наиболее мощных в 2007 году. Наибольшую силу ураган набирает над водной поверхностью, а при прохождении над сушей происходит его “размывание” и ослабление”.

Смерчи. Это вихревые образования небольших размеров. Как и торнадо, они имеют трубу, образуются над океаном или морем, на поверхности, которых возникают температурные аномалии небольших по площади размеров. Автору статьи приходилось многократно наблюдать смерчи в восточной части Чёрного моря, где большая активность волн Россби на фоне очень тёплого моря приводит к образованию многочисленных и глубоких температурных аномалий поверхностных вод. Развитию смерчей в этой части моря также способствует очень влажный воздух.

Выводы. Атмосферные вихри (циклоны, торнадо, тайфуны и пр.) формируются температурными аномалиями поверхностных вод с отрицательной температурой, в центре аномалии температура воды ниже, на периферии - выше. Эти аномалии формируются волнами Россби Мирового океана, в которых происходит подъём холодной воды с глубины океана к его поверхности. При этом температура воздуха в рассматриваемых эпизодах обычно бывает выше температуры воды. Впрочем, выполнение этого условия не обязательно, атмосферные вихри могут быть образованы, когда температура воздуха над океаном или морем ниже температуры воды. Главное условие образования вихря: наличие отрицательной аномалии воды и разности температур вода – воздух. В этих условиях и создаётся отрицательная аномалия воздуха. Чем больше разность температур атмосфера – вода океана, тем активнее развивается вихрь. Если температура воды аномалии равна температуре воздуха, то вихрь не образуется, а существующий в этих условиях не развивается. Далее всё происходит так, как было описано.

Литература:
Бондаренко А.Л. Эль-Ниньо – Ла-Ниньа: механизм формирования// Природа. №5. 2006. С. 39 – 47.
Бондаренко А.Л., Жмур В.В. Настоящее и будущее Гольфстрима// Природа. 2007. № 7. С. 29 – 37.
Бондаренко А.Л., Борисов Е.В., Жмур В.В. О длинноволновой природе морских и океанских течений// Метеорология и гидрология. 2008. №1. С. 72 – 79.
Бондаренко А.Л. Новые представления о закономерностях формирования циклонов, торнадо, тайфунов смерчах. 17.02.2009г. http://www.oceanographers.ru/index.php?option=com_content&task=view&id=1534&Itemid=52
Грей В.М. Генезис и интенсификация тропических циклонов// Сб. Интенсивные атмосферные вихри. 1985. М.: Мир.
Иванов В.Н. Зарождение и развитие тропических циклонов// C.: Тропическая метеорология. Труды III Международного симпозиума. 1985. Л. Гидрометеоиздат.
Каменкович В.М., Кошляков М.М., Монин А.С. Синоптические вихри в океане. Л.: Гидрометеоиздат. 1982. 264с.
Моисеев С.С., Сагдеев Р.З., Тур А.В., Хоменко Г.А., Шукуров А.В. Физический механизм усиления вихревых возмущений в атмосфере// Доклады Академии наук СССР. 1983. Т.273. №3.
Наливкин Д.В. Ураганы, бури, смерчи. 1969. Л.: Наука.
Юсупалиев У., Анисимов Е.П., Маслов А.К., Шутеев С.А. К вопросу формирования геометрических характеристик смерча. Часть II// Прикладная физика. 2001. №1.
Gray W. M. Tropical cyclone genesis// Atmos. Sci. Paper, Colo. St. Univer. 1975. №234.

Альберт Леонидович Бондаренко , океанолог, доктор географических наук, ведущий научный сотрудник Института водных проблем РАН. Область научных интересов: динамика вод Мирового океана, взаимодействие океана и атмосферы. Достижения: доказательство существенного влияния океанических волн Россби на формирование термодинамики океана и атмосферы, погоды и климата Земли.
[email protected]